Efecto de la especie y la edad de rebrote en el perfil de ácidos grasos de leguminosas y arbustivas tropicales

José Edwin Mojica-Rodríguez
Edwin Castro-Rincón
Juan Carulla-Fornaguera
Carlos Eduardo Lascano-Aguilar

Se evaluó el efecto de tres edades de rebrote (4, 8 y 12 semanas) sobre la producción de forraje, calidad nutricional y perfil de ácidos grasos en leguminosas herbáceas: Clitoria ternatea, Pueraria phaseoloides, Canavalia brasiliensis, Centrosema molle, Centrosema macrocarpum, Alysicarpus vaginalis y Lablab purpureus; en leguminosas arbustivas: Cratylia argentea, Gliricidia sepium, Desmodium velutinum, Cajanus cajan y Leucaena leucocephala; y en una arbustiva no leguminosa: Moringa oleifera (Moringaceae). Se utilizó un diseño de parcelas divididas con bloques al azar, en el cual la parcela principal fue la especie forrajera y la subparcela la edad de rebrote. Los principales ácidos grasos presentes en las especies fueron el ácido palmítico (C16:0), ácido linolénico (C18:3) y linoleico (C18:2). Sin embargo, en las leguminosas herbáceas y arbustivas, el contenido de ácidos grasos fue diferente y disminuyó con la edad de rebrote en los dos grupos. La relación C18:2/C18:3 fue mayor en las leguminosas herbáceas que en las arbustivas, lo cual podría resultar en una mayor concentración de ácido linoleico conjugado (ALC) en la grasa de la leche. La leguminosa Cajanus cajan presentó el mayor (p<0,05) contenido de ácido linolénico (C18:3) y de precursores de ALC en las tres edades de rebrote evaluadas, lo cual sugiere que su uso en la alimentación de bovinos en sistemas de doble propósito resultaría en concentraciones altas de ALC c9 t11 en la grasa de la leche, en comparación con otras especies.

Mojica-Rodríguez, J. E., Castro-Rincón, E., Carulla-Fornaguera, J., & Lascano-Aguilar, C. E. (2017). Efecto de la especie y la edad de rebrote en el perfil de ácidos grasos de leguminosas y arbustivas tropicales. Ciencia Y Tecnología Agropecuaria, 18(3), 463-477. https://doi.org/10.21930/rcta.vol18_num3_art:738

José Edwin Mojica-Rodríguez

Investigador PhD, Corporación Colombiana de Investigación Agropecuaria (Corpoica), Centro de Investigación Motilonia. Agustín Codazzi, Colombia. 

Edwin Castro-Rincón

Investigador PhD, Corporación Colombiana de Investigación Agropecuaria (Corpoica), Centro de Investigación Obonuco. Pasto, Colombia.

Juan Carulla-Fornaguera

Docente, Universidad Nacional de Colombia, Facultad de Medicina Veterinaria y Zootecnia, Departamento de Producción Animal. Bogotá, Colombia.

Carlos Eduardo Lascano-Aguilar

Investigador emérito, Centro Internacional de Agricultura Tropical (CIAT). Bogotá, Colombia.

Allakhverdiev, S. I. (2009). Regulatory roles in photosynthesis of unsaturated fatty acids in membrane lipids. In H. Wada, & N. Murata (Eds.), Lipids in photosynthesis: essential and regulatory functions (pp. 265-282). Dordrecht, the Netherlands: Springer.
Allen, M. S. (2000). Effects of diet on short-term regulation of feed intake by lactating dairy cattle. Journal of Dairy Science, 83(7), 1598-1624.
Association of Official of Analytical Chemistry [AOAC]. (2010). Official Methods of Analysis (18th ed.). Maryland: AOAC International.
Belury, M. A. (2002). Dietary conjugated acid linoleic in health: physiological effects and mechanism of action. Annual Review of Nutrition, 22, 505-531.
Boufaïed, H., Chouinard, P. Y., Tremblay, G. F., Petit, H. V., Michaud, R., & Belanger, G. (2003). Fatty acids in forages. I. Factors affecting concentrations. Canadian Journal of Animal Science, 83(3), 501-511.
Castillo, J. A., Olivera, M., Pabón, M. L., Ribeiro, C. V., Daza, E. E., & Carulla, J. E. (2004). Kynetics and thermodynamics on the in vitro biohydrogenation on linoleic acid, alpha linoleic acid and their combinations. Conference paper presented at 51st Reunión Anual de Sociedad Brasilera de Zootecnia, Barra dos Coqueiros, Brasil.
Chilliard, Y., Ferlay, A., & Doreau, M. (2001). Effect of different types of forages, animal fat or marine oils in cow’s diet on milk fat secretion and composition, especially conjugated linoleic acid (CLA) and polyunsaturated fatty acids. Livestock Production Science, 70(1-2), 31-48.
Clapham, W., Foster, G., Neel, P., & Fedders, M. (2005). Fatty acid composition of traditional and novel forages. Journal of Agricultural and Food Chemistry, 53(26), 10068-10073.
Collomb, M., Bütikofer, U., Sieber, R., Jeangros, B., & Bosset, J. O. (2002). Correlation between fatty acids in cows’ milk fat produced in the Lowlands, Mountains and Highlands of Switzerland and botanical composition of the fodder. International Dairy Journal, 12(8), 661-666.
Dhiman, T. R., Anand, G. R., Satter, L. D., & Pariza, M. W. (1999). Conjugated linoleic acid content of milk from cows fed different diets. Folia Biologica, 53(4), 2146-2156.
Dilzer, A., & Park, Y. (2012). Implication of conjugated linoleic acid (CLA) in human health. Critical reviews in food science and nutrition, 52(6), 488-513.
Elgersma, A., Ellen, G., Van Der Horst, H., Muuse, B. G., Boer, H., & Tamminga, S. (2004). Influence of cultivar and cutting date on fatty acids composition of perennial ryegrass (Lollium perenne L.). Grass and Forage Science, 59, 104-105.
Ellis, K. A., Innocent, G., Grove-White, D., Cripps, P., McLeann, W. G., Howard, C. V., & Mihm, M. (2006). Comparing the fatty acid composition of organic and conventional milk. Journal of Dairy Science, 89(6), 1938-1950.
Garcés, R., & Mancha, M. (1993). One step lipid extraction and fatty acid methyl esters preparation from fresh plant tissue. Analytical Biochemistry, 211(1), 139-143.
Glasser, F., Doreau, M., Maxin, G., & Baumont, R. (2013). Fat and fatty acid content and composition forages. Animal Feed Science and Technology, 185(1-2), 19-34.
Höjer, A., Adler, S., Martinsson, K., Jensen, S. K., Steinshamn, H., Thuen, E., & Gustavsson, A. (2012). Effect of legume - grass silage and alfa – tocopherol, beta carotene and retinol concentrations in organically produced bovine milk. Livestock Science, 148(3), 268-281.
Ip, C., Banni, S., Angioni, E., Carta, G., McGinley, J., Thompson, H. J., ... Bauman, D. (1999). Conjugated linoleic acid-enriched butter fat alters mammary gland morphogenesis and reduces cancer risk in rats. Journal of Nutrition, 129, 2135-2142.
Jensen, G. (2002). The composition of bovine milk lipids: January 1995 to December 2000. Journal of Dairy Science, 85(2), 295-350.
Khan, N. A., Farooq, N. W., Ali, M., Suleman, M., Ahmad, N., Sulaiman, S. M., ... Hendriks, W. H. (2015). Effect of species and harvest maturity on the fatty acids profile of tropical forages. Journal of Animal and Plant Sciences, 25(3), 739-746.
León, J., Pabón, M., & Carulla, J. (2011). Relación entre las características de la pastura y el contenido de ácido linoleico conjugado (ALC) en la leche. Revista Colombiana de Ciencias Pecuarias, 24, 63-73.
Loor, J. J., Soriano, F. D., Lin, X., Herbein, J. H., & Polan, C. E. (2003). Grazing allowance after the morning or afternoon milking for lactating cows fed a total mixed ration (TMR) enhances trans11-18:1 and cis9, trans11-18:2 (rumenic acid) in milk fat to different extents. Animal Feed Science and Technology, 109(1-4), 105-119.
Ørskov, E. R., Deb Howell, F. D., & Mould, F. (1980). The use of the nylon bag technique for the evaluation of feedstuffs. Tropical Animal Production, 5(3), 195-213.
Pariza, M. W., & Hargreaves, W. A. (1985). A beef-derived mutagenesis modulator inhibits initiation of mouse epidermal tumors by 7, 12 dimethylbenz(a) antrazene. Carcinogenesis, 6(4), 591-593.
SAS Institute Inc. (2011). SAS/STAT (Versión 9,3). SAS Institute: Cary, EE. UU.
Shingfield, K. J., Bonnet, M., & Scollan, N. D. (2013). Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal, 7(s1), 132-162.
Steel, R., & Torrie, J. H. (1999). Correlación lineal. En R. G. D. Steel y J. H. Torrie (Eds.), Bioestadística: principios y procedimientos (2nd. ed., pp. 263-275). España: Mc Graw Hill.
Stypinsky, P. (2011). The effect of grassland-based forages on milk quality and quantity [Special issue]. Agronomy Research, 9(2), 479-488.
Toyes, E. A., Murillo, B. A., Espinoza, J. L., Carreun, L. P., & Palacios, A. E. (2013). Composición química y precursores de ácido vaccénico y ruménico en especies forrajeras en baja California Sur, México. Revista Mexicana de Ciencias Pecuarias, 4(3), 373-386.
Van Soest, P. J., Roberton, J., & Lewis, M. (1991). Methods for dietary fiber, neutral fiber and no starch polysaccharides in relation to nutrition. Journal of Dairy Science, 74(10), 3583-3597.
Váradyová, Z., Kisidayova, S., Siroka, P., & Jalc, D. (2008). Comparison of fatty acid composition of bacterial and protozoal fractions in rumen fluid of sheep fed diet supplemented with sunflower, rapeseed and linseed oils. Animal Feed Science and Technology, 144(1-2), 44-54.
Ward, A, T., Wittenberg, K. M., Froebe, H. M., Przybylski, R., & Malconlmson, L. (2003). Fresh forage and solin supplementation on conjugated linoleic acid levels in plasma and milk. Journal of Dairy Science, 86(5), 1742-1750.
White, S. L., Bertrand, J. A., Wade, M. R., Wade, M. R., Washburn, S. P., Greet, J. T., & Jenkins, T. C. (2001). Comparison of fatty acid content of milk from Jersey and Holstein Cows consuming pasture or a total mixed ration. Journal of Dairy Science, 84(10), 2295-2301.
Wiking, L., Theil, P., Nielsen, J., & Sorensen, M. (2010). Effect of grazing fresh legumes or feeding silage on fatty acids and enzymes involved in the synthesis of milk fat in dairy cows. Journal of Dairy Research, 77(3), 337-342.
Yamasaki, M., Kishihara, K., Ikeda, I., Sugano, M., & Yamada, K. (1999). A recommended esterification method for gas chromatographic measurement of conjugated linoleic acid. Journal of the American Oil Chemists’ Society, 76(8), 933-938.


La descarga de datos todavía no está disponible.
ácidos grasos, alimentación de los animales, forrajes, leche, rumiante

Article Details