Fotosíntesis y rendimiento de biomasa en ají, rábano y maíz sometidos a agua tratada magnéticamente

Daniel Iván Ospina-Salazar
Jhony Armando Benavides Bolaños
Orlando Zúñiga-Escobar
Carlos Germán Muñoz-Perea

En este estudio se evaluó el efecto del agua tratada magnéticamente (ATM) en parámetros fisiológicos de ají Tabasco, rábano rojo y maíz amarillo. La mitad de las plantas de las tres especies se regaron con agua normal del acueducto, y la otra con agua tratada a través de un dispositivo magnético. Se midieron la fotosíntesis, la biomasa y el contenido mineral (este último solo en frutos de ají Tabasco). Todas las especies cultivadas con ATM aumentaron su tasa fotosintética y su conductancia estomática. Los parámetros de fluorescencia, como la fluorescencia variable (Fv /Fm) y la extinción no fotoquímica, permanecieron sin cambios en las especies evaluadas. En el ají Tabasco, el agua con tratamiento favoreció un mayor rendimiento, en parámetros como biomasa aérea, frutos por planta y área foliar, incrementándose también el contenido de nitrógeno y cationes divalentes en frutos. Además, hubo una relación parcialmente positiva entre el área foliar y el rendimiento de frutos por planta (r2=0,52 en el control y 0,30 con ATM). En contraste, en las plantas de maíz solo hubo un aumento en el peso y en los granos por mazorca, mientras que las de rábano mostraron una pérdida no significativa en la biomasa total. La mayor acumulación de biomasa observada en las plantas de ají Tabasco y maíz se atribuye a una mayor área foliar o a la asimilación de carbono. Debido a que la fluorescencia de la clorofila no se alteró, se propone que el ATM no provoca ningún cambio en el complejo de oxidación del agua del fotosistema II. Por otra parte, la falta de respuesta de algunas variables en las tres especies mostró que el ATM puede tener efectos interespecíficos. A pesar de lo anterior, esta tecnología puede ser una alternativa para mejorar el rendimiento de los cultivos, en particular en del ají Tabasco.

Ospina-Salazar, D., Benavides Bolaños, J., Zúñiga-Escobar, O., & Muñoz-Perea, C. (2018). Fotosíntesis y rendimiento de biomasa en ají, rábano y maíz sometidos a agua tratada magnéticamente. Corpoica Ciencia Y Tecnología Agropecuaria, 19(2). https://doi.org/10.21930/rcta.vol19_num2_art:537

Jhony Armando Benavides Bolaños, Universidad del Valle

Ing. agrícola. Tecnólogo en manejo y conservación de suelos y aguas. Técnico profesional en control ambiental. Becario Fulbright (2017). M.S. Agricultural and Biological Engineering. 

Abou El-Yazied, A., El-Gizawy, A. M., Khalf, S. M., El-Satar, A., & Shalaby, O. A. (2012). Effect of magnetic field treatments for seeds and irrigation water as well as N, P and K levels on productivity of tomato plants. Journal of Applied Sciences Research, 8(4), 2088-2099. Retrieved from http://www.aensiweb.com/old/jasr/jasr/2012/2088-2099.pdf
Aly, M. A., Thanaa, M. E., Osman, S. M., & Abdelhamed, A. A. (2015). Effect of magnetic irrigation water and some anti-salinity substances on the growth and production of Valencia orange. Middle East Journal of Agriculture Research, 4(1), 88-98. Retrieved from http://www.curresweb.com/mejar/mejar/2015/88-98.pdf
Baker, N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113. doi: 10.1146/annurev.arplant.59.032607.092759
Bavec, F., & Bavec, M. (2002). Effects of plant population on leaf area index, cob characteristics and grain yield of early maturing maize cultivars (FAO 100-400). European Journal of Agronomy, 16(2), 151-159. https://doi.org/10.1016/S1161-0301(01)00126-5
Cai, R., Yang, H., He, J., & Zhu, W. (2009). The effects of magnetic fields on water molecular hydrogen bonds. Journal of Molecular Structure, 938(1-3), 15-19. https://doi.org/10.1016/j.molstruc.2009.08.037
Chang, K. T., & Weng, C. I. (2006). The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation. Journal of Applied Physics, 100(4), 1-6. https://doi.org/10.1063/1.2335971
Dai, Y., Shen, Z., Liu, Y., Wang, L., Hannaway, D., & Lu, H. (2009). Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environmental and Experimental Botany, 65(2-3), 177-182. https://doi.org/10.1016/j.envexpbot.2008.12.008
Del Amor, F. M. (2006). Growth, photosynthesis and chlorophyll fluorescence of sweet pepper plants as affected by the cultivation method. Annals of Applied Biology, 148(2), 133-139. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/aab.2006.148.issue-2/issuetoc
El-Sayed, H., & El-Sayed, A. (2014). Impact of magnetic water irrigation for improve the growth, chemical composition and yield production of broad bean (Vicia faba L.) plant. American Journal of Experimental Agriculture, 4(4), 476-496. Retrieved from http://www.sciencedomain.org/abstract/2942
Graber, E. R., Meller-Harel, Y., Kolton, M., Cytryn, E., Silber, A., Rav-David D., … Elad, Y. (2010). Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil, 337(1), 481-496. https://doi.org/10.1007/s11104-010-0544-6
Grewal, H. S., & Maheshwari, B. L. (2011). Magnetic treatment of irrigation water and snow pea and chickpea seeds enhances early growth and nutrient contents of seedlings. Bioelectromagnetics, 32(1), 58-65. doi: 10.1002/bem.20615
Guo, Y. Z., Yin, D. C., Cao, H. L., Shi, J. Y., Zhang, C. Y., Liu, Y. M., … Shang, P. (2012). Evaporation rate of water as a function of a magnetic field and field gradient. International Journal of Molecular Sciences, 13(12), 16916-16928. doi: 10.3390/ijms131216916
Hager, M., Hermann, M., Biehler, K., Krieger-Liszkay, A., & Bock, R. (2002). Lack of the small plastid-encoded PsbJ polypeptide results in a defective water-splitting apparatus of photosystem II, reduced photosystem I levels, and hypersensitivity to light. Journal of Biological Chemistry, 277(16), 14031-14039. doi: 10.1074/jbc.M112053200
Hozayn, M., Abd El Monem, A. A., Abdelraouf, R. E., & Abdalla, M. (2013). Do magnetic water affect water efficiency, quality and yield of sugar beet (Beta vulgaris L.) plant under arid regions conditions? Journal of Agronomy, 12(1), 1-10. http://dx.doi.org/10.3923/ja.2013.1.10
Huez-López, M. A., Ulery, A. L., Samani, Z., Picchioni, G., & Flynn R. P. (2011). Response of chile pepper (Capsicum annuum L.) to salt stress and organic and inorganic nitrogen sources: III. Ion uptake and translocation. Tropical and Subtropical Agroecosystems, 14(3), 765-776. Retrieved from http://www.redalyc.org/articulo.oa?id=93921493009
Kang, J. G., & van Iersel, M. W. (2004). Nutrient solution concentration affects shoot: root ratio, leaf area ratio, and growth of subirrigated salvia (Salvia splendens). HortScience, 39(1), 49-54. Retrieved from http://hortsci.ashspublications.org/content/39/1/49.full.pdf+html
Khoshravesh, M., Mostafazadeh-Fard, B., Mousavi, S. F., & Kiani, A. R. (2011). Effects of magnetized water on the distribution pattern of soil water with respect to time in trickle irrigation. Soil Use and Management, 27(4), 515-522. doi: 10.1111/j.1475-2743.2011.00358.x
Maheshwari, B. L., & Grewal, H. S. (2009). Magnetic treatment of irrigation water: its effects on vegetable crop yield and water productivity. Agricultural Water Management, 96(8), 1229-1236. https://doi.org/10.1016/j.agwat.2009.03.016
Mahmood, S., & Usman, M. (2014). Consequences of magnetized water application on maize seed emergence in sand culture. Journal of Agricultural Science and Technology, 16(1), 47-55. Retrieved from http://jast.modares.ac.ir/article_10299_efbe8d29730f20e8a818009feb1719d5.pdf
Moussa, H. R. (2011). The impact of magnetic water application for improving common bean (Phaseolus vulgaris L.) production. New York Science Journal, 4(6):15 – 20.
Noran, R., Shani, U., & Israel, L. (1996). The effect of irrigation with magnetically treated water on the translocation of minerals in the soil. Magnetic and Electric Separation, 7(2), 109-122. Retrieved from http://scholar.google.com/scholar_url?url=http://downloads.hindawi.com/archive/1996/046596.pf&hl=es&sa=X&scisig=AAGBfm1KdDrlbcS2F1R6szVW9pKsOg5PYw&nossl=1&oi=scholarr
Otsuka, I., & Ozeki, S. (2006). Does magnetic treatment of water change its properties? The Journal of Physical Chemistry B., 110(4), 1509-1512. https://doi.org/10.1021/jp056198x
Pang, X. F., & Deng, B. (2008). Investigation of changes in properties of water under the action of a magnetic field. Science in China Series G: Physics, Mechanics and Astronomy, 51(11), 1621-1632. https://doi.org/10.1007/s11433-008-0182-7
Pfündel, E. (1998). Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence. Photosynth Research, 56(2), 185-195. https://doi.org/10.1023/A:1006032804606
Putti, F., Almeida, L., Klar, A., Ferreira da Silva, J., Pires, C. & Ludwig, R. (2015). Response of lettuce crop to magnetically treated irrigation water and different irrigation depths. African Journal of Agricultural Research, 10(22), 2300-2308. Retrieved from http://www.academicjournals.org/article/article1433520416_Putti%20et%20al.pdf
Smith, S., McLeod, B. R., Liboff, A. R., & Cooksey, K. (1987). Calcium cyclotron resonance and diatom motility. Bioelectromagnetics, 8(3), 215-227. https://doi.org/10.1002/bem.2250080302
Szcześ, A., Chibowski, E., Hołysz, L., & Rafalski, P. (2011). Effects of static magnetic field on water at kinetic condition. Chemical Engineering and Processing: Process Intensification, 50(1), 124-127. https://doi.org/10.1016/j.cep.2010.12.005

Descargas

La descarga de datos todavía no está disponible.

Article Details