Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio
Publicado: 2015-12-30

La solubilización de fosfatos como estrategia microbiana para promover el crecimiento vegetal

Universidad de Boyacá
##plugins.generic.jatsParser.article.authorBio##
×

Mayra Eleonora Beltrán Pineda

Bióloga. MSc. Microbiología. Grupo de investigación Gestión Ambiental. Universidad de Boyacá. Tunja, Boyacá.
ácidos orgánicos microorganismos solubilizadores de fosfato microorganismos promotores de crecimiento vegetal suelos.

Resumen

Debido a la aplicación constante de insumos químicos en los agroecosistemas, el costo de producción de las cosechas y la calidad ambiental del suelo y agua se ha visto afectada. Los microorganismos realizan la mayoría de los ciclos biogeoquímicos; por tanto, su función es fundamental para mantener el equilibrio de los agroecosistemas. Uno de esos grupos funcionales son los microorganismos solubilizadores de fosfato, reconocidos promotores de crecimiento vegetal. Estas poblaciones microbianas realizan una actividad importante, ya que en muchos suelos se encuentran grandes reservas de fósforo insoluble, resultado de la fijación de gran parte de los fertilizantes fosforados aplicados, que no pueden ser asimilados por la planta. Los microorganismos solubilizadores de fosfato usan diferentes mecanismos de solubilización, como la producción de ácidos orgánicos, que solubilizan dichos fosfatos insolubles en la zona rizosférica. Los fosfatos solubles son absorbidos por la planta, lo cual mejora su crecimiento y productividad. Al utilizar esas reservas de fosfato presentes en los suelos, se disminuye la aplicación de fertilizantes químicos que, por una parte, pueden nuevamente ser fijados por iones Ca, Al o Fe volviéndolos insolubles y, por otra, incrementan los costos de producción de las cosechas.

Las poblaciones microbianas han sido ampliamente estudiadas en diferentes tipos de ecosistemas, tanto naturales como agroecosistemas. Gracias a su efectividad en estudios en laboratorio y campo, el fenotipo solubilizador de fosfato es de gran interés para los ecólogos microbianos que han empezado a establecer las bases moleculares de dicho rasgo.

Mayra Eleonora Beltrán Pineda, Universidad de Boyacá

Bióloga. MSc. Microbiología. Grupo de investigación Gestión Ambiental. Universidad de Boyacá. Tunja, Boyacá.
Beltrán Pineda, M. E. (2015). La solubilización de fosfatos como estrategia microbiana para promover el crecimiento vegetal. Ciencia &Amp; Tecnología Agropecuaria, 15(1), 101–113. https://doi.org/10.21930/rcta.vol15_num1_art:401
  1. Achal V, Savant V, Reddy M. 2007. Phosphate solubilization by a wild type strain and UV-induced mutants of Aspergillus tubugensis, Soil. Biol. Biochem. 39:695-699. https://doi.org/10.1016/j.soilbio.2006.09.003
  2. Ahmad F, Ahmad I, Khan M. 2008. Screening of free-living rhizobacteria for their multiple plant growth promoting activities. Microbiol. Res. 163:173-181. https://doi.org/10.1016/j.micres.2006.04.001
  3. Babu-Khan S, Chia Yeo T, Martin W, Duron R, Goldstein, A. 1995. Cloning a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Applied and environmental microbiology 61(3):972-978. https://doi.org/10.1128/AEM.61.3.972-978.1995
  4. Banerjee S, Palit R, Sengupta C, Standing, D. 2010. Stress induced phosphate solubilization by Arthrobacter sp. and Bacillus sp. Isolated from tomato rhizosphere. Australian Journal of crop science 4(6):378-383.
  5. Banik S, Dey B. 1983. Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate-solubilizing micro-organisms. Plant and Soil. 69: 353-364. https://doi.org/10.1007/BF02372456
  6. Barroso C, Nahas E. 2005. The status of soil phosphate fractions and the ability of fungi to dissolve hardly soluble phosphates. Applied Soil Ecology 29: 73-83. https://doi.org/10.1016/j.apsoil.2004.09.005
  7. Baziramakenga R, Simard R, Leroux G. 1995. Determination of organic acids in soil extracts by ion chromatography. Soil. Biol. Biochem. 27(3): 349-356. https://doi.org/10.1016/0038-0717(94)00178-4
  8. Beare M, Reddy M, Tian G, Srivastava S. 1997. Agricultural intensification, soil biodiversity and Agroecosystem function in the tropics: the role of descomposer biota. App. Soil. Ecol 6: 87-108. https://doi.org/10.1016/S0929-1393(96)00150-3
  9. Beltrán M. 2009. Evaluación del efecto del sistema de producción del cultivo del arroz (secano e inundado) sobre la población microbiana y la actividad enzimática asociada al metabolismo edáfico del fósforo (tesis de Maestría en Ciencias- Microbiología). Facultad de Ciencias. Universidad Nacional de Colombia sede Bogotá.
  10. Bobadilla C, Rincón S. 2008. Aislamiento y producción de bacterias fosfato solubilizadoras a partir de compost obtenido a partir de residuos de plaza (tesis de grado Microbiología Industrial). Pontificia Universidad Javeriana. Bogotá.
  11. Chaiharn M, Lumyong S. 2009. Phosphate solubilization potential and stress tolerance of rhizobacteria from rice soil in Northern Thailand. W J Microbiol Biotechnol 25: 305-314. https://doi.org/10.1007/s11274-008-9892-2
  12. Chakraborty B, Chakraborty U, Sha A, Sunar K, Dey P. 2010. Evaluation of phosphate solubilizers from soils of North Bengal and their diversity analysis. World Journal of Agricultural Sciences 6(2):195-200.
  13. Chandra S, Choure K, Chaubey R, Maheshwari D. 2007. Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotina sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Br. J. Microbiol. 38: 124-130. https://doi.org/10.1590/S1517-83822007000100026
  14. Chen G, He Z, Huang C. 2000. Microbial biomass phosphorus and its significance in predicting phosphorus availability in red soils. Commun. Soil. Sci. Plant Anal. 31:655-667. https://doi.org/10.1080/00103620009370467
  15. Chen Y, Rekha A, Arun A, Shen F, Lai W, Young C. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology 34: 33-41. https://doi.org/10.1016/j.apsoil.2005.12.002
  16. Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T. 2005. Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil. Biol. Biochem. 37:1970-1974. https://doi.org/10.1016/j.soilbio.2005.02.025
  17. Cooper R. 1959. Bacterial fertilizers in Soviet Union. Soils fertility 22: 327-333.
  18. Coutinho F, De Queiroz Cavalcanti M, Mayumi A. 2011.Phosphatesolubilizing fungi isolated from a semiarid area cultivated with melon (Cucumis melo L. cv. gold mine) Acta Botánica Brasilica 25(4): 929-931. https://doi.org/10.1590/S0102-33062011000400020
  19. Coyne M. 2000. Microbiología del suelo: un enfoque exploratorio. Madrid: Editorial panamericana, p 180 - 185.
  20. Datta M, Palit R, Sengupta C, Kumar M, Banerjee S. 2011. Plant growth promoting rhizobacteria enhance growth and yield of Chilli (Capsicum annuum L.) under field conditions. Australian Journal of Crop Science 5:531-536.
  21. Da Silva P, Vahas E. 2002. Bacterial diversity on soil in response to different plants, phosphate and liming. Brazilian Journal of Microbiology. 33: 304-310. https://doi.org/10.1590/S1517-83822002000400005
  22. De Freitas J, Banerjee M, Germida J. 1997. Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.) Biology Fertility Soils 24: 358-364. https://doi.org/10.1007/s003740050258
  23. Fankem H, Nwaga D, Deubel A, Dieng W, Merbach W. 2006. Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree (Elaeis guineensis) rhizosphere in Cameroon. African Journal of Biotechnology 5 (24): 2450-2460.
  24. Fernández L, Zalba P, Gómez M. 2005. Bacterias solubilizadoras de fosfato inorgánico aisladas de suelos de la región sojera.CI. Suelo (Argentina) 23 (1):31-37.
  25. Goldstein A, Liu S. 1987. Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Biotechnology 5:72-74. https://doi.org/10.1038/nbt0187-72
  26. Goldstein A, Rogers D, Mead G. 1993. Separating phosphate from via bioprocessing. Biotechnology 11:1250-1254. https://doi.org/10.1038/nbt1193-1250
  27. Gómez Y, Zabala M. 2001. Determinación de la capacidad solubilizadora del P en hongos aislados de la rizósfera del maní (Arachis hypogaea L.) Saber. Universidad de Oriente, Venezuela 13(1):8-13.
  28. Goosen N, Horsman H, Huinen R, Van de Putte P. 1989. Acinetobacter calcoaceticus genes involved in biosynthesis of the coenzyme pyrrolo-quinoline-quinone: nucleotide sequence and expression in Escherichia coli K-12. J. Bacteriol.171:447-455. https://doi.org/10.1128/JB.171.1.447-455.1989
  29. Guang-Can T, Shu-tun T, Miao-Ying C, Guang-hui. 2008. Phosphate solubilizing and mineralizing abilities of bacteria isolated from soils. Pedosphere 18(4):515-523. https://doi.org/10.1016/S1002-0160(08)60042-9
  30. Gyaneshwar P, Naresh G, Kumar L, Parekh J, Poole P. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil 245: 83-93. https://doi.org/10.1023/A:1020663916259
  31. Herrera J. 1997. El uso de biofertilizantes en la agricultura cubana. Centro de investigaciones microbiológicas. La Habana. Cuba.
  32. Illmer P, Schinner F. 1995. Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil. Biol. Biochem. 27(3): 257-263. https://doi.org/10.1016/0038-0717(94)00190-C
  33. Jorquera M, Hernández M, Rengel Z, Marschner P, Mora M. 2008. Isolation of culturable phosphobacteria with both phytatemineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Soil Biology Fertility Soils 44: 1025-1034. https://doi.org/10.1007/s00374-008-0288-0
  34. Khan M, Zaidi A, Wani P. 2007. Role of phosphate solubilizing microorganisms in agriculture- a review. Agron. Sustain. Dev. 27:29-43. https://doi.org/10.1051/agro:2006011
  35. Kucey R. 1983. Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Canadian Journal Soil Science 63: 671-678. https://doi.org/10.4141/cjss83-068
  36. Kucey R, Jenzen H, Leggett M. 1989. Microbially mediated increases in plant available phosphorus. Adv. Agron. 42: 199-228. https://doi.org/10.1016/S0065-2113(08)60525-8
  37. Lara C, Esquivel L, Negrete J. 2011. Bacterias nativas solubilizadoras de fosfato para incrementar los cultivos en el departamento de Córdoba-Colombia. Biotecnología en el sector agropecuario y agroindustrial 9(2): 114-120.
  38. Liu S, Lee L, Tai C, Hung C, Chang Y, Wolfram J, Rogers R, Goldstein A.1992. Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: nucleotide sequence and probable involvement in biosynthesis of coenzyme pyrroloquinoline quinone. Journal of Bacteriology 174(18): 5814-5819. https://doi.org/10.1128/JB.174.18.5814-5819.1992
  39. Menkina R. 1963. Bacterial fertilizers and their importance for agricultural plants. Microbiology 33: 352-358.
  40. Moratto C, Martínez L, Valencia H, Sánchez J. 2005. Efecto del uso del suelo sobre hongos solubilizadores de fosfato y bacterias diazotróficas en el páramo de Guerrero (Cundinamarca). Agronomía colombiana 23(2): 299-309.
  41. Moreno N, Moreno L, Uribe D. 2007. Biofertilizantes para la agricultura en Colombia. En: Izaguirre Mayoral M, Labandera C, Sanjuán J. (eds.) Biofertilizantes en Iberoamérica: Visión técnica, Científica y Empresarial vol. 1. Denad Internacional, Montevideo, p 38-45.
  42. Muleta D, Assefa F, Börjessoon E, Granhall U. 2013. Phosphatesolubilising rhizobacteria associated with Coffea arabica L. in natural coffee forests of southwestern Ethiopia. Journal of the Saudi Society of Agricultural Sciences (12):73-84. https://doi.org/10.1016/j.jssas.2012.07.002
  43. Naik P, Raman G, Narayanan K, Natarajan N. 2008. Assesment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BCM Microbiology (8)230:1-14. https://doi.org/10.1186/1471-2180-8-230
  44. Oberson A, Friesen D, Rao I, Bühler S, Frossard E. 2001. Phosphorus transformations in an oxisol under contrasting land-use systems: The role of the microbial biomass. Plant and Soil (237):197-210. https://doi.org/10.1023/A:1013301716913
  45. Oliviera C, Alves V, Marriel I, Gómez E, Scotti M, Carneiro M, Guimaraes M, Schaffert R, Sa N. 2008. Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil. Biol. Biochem. 41: 1782-1787. https://doi.org/10.1016/j.soilbio.2008.01.012
  46. Oviedo M, Iglesias M. 2005. Utilización de bacterias solubilizadoras de fosfato en cultivo de raygras. Resumen A053. Comunicaciones científicas y tecnológicas. Universidad Nacional del Nordeste. Argentina. 3 p.
  47. Pandey A, Trivedi P, Kumar B, Palni L. 2006. Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (BO) isolated from a sub-Alpine location in the Indian Central Himalaya. Current Microbiology 53: 102-107. https://doi.org/10.1007/s00284-006-4590-5
  48. Paredes M, Espinosa D. 2010. Ácidos orgánicos producidos por rizobacterias que solubilizan fosfatos: una revisión crítica. Terra Latinoamericana. 28(1): 61-70.
  49. Patiño C. 2010. Solubilización de fosfatos por poblaciones bacterianas aisladas de un suelo del Valle del cauca. Estudio de biodiversidad y eficiencia (tesis doctoral en Ciencias Agropecuarias - Manejo de Suelos y Aguas). Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia sede Palmira.
  50. Paul N, Sundara W. 1971. Phosphate-dissolving bacteria in the rhizosphere of some cultivated legumes. Plant and Soil 35: 127-132. https://doi.org/10.1007/BF01372637
  51. Pérez A, De la ossa J, Montes D. 2012. Hongos solubilizadores de fosfatos en fincas ganaderas del departamento de Sucre. Rev. Colombiana Cienc. Anim. 4(1):35-45. https://doi.org/10.24188/recia.v4.n1.2012.263
  52. Pérez E, Sulbaran M, Ball M, Yarzabal L. 2007. Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil. Biol. Biochem 39: 2905-2914. https://doi.org/10.1016/j.soilbio.2007.06.017
  53. Picone L, Zamuner E. 2002. Fósforo orgánico y fertilidad fosfórica. Informaciones agronómicas del cono sur 16: 11-15.
  54. Pikovskaya R. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17: 362-370.
  55. Ponmurugan P, Gopi C. 2006. In vitro production of growth regulators and phosphatase activity by phosphate solubilizing bacteria. Afr.J. Biotechnol. 5:348-350.
  56. Prashar P, Kapoor N, Sachdeva S. 2012. Structural and functional diversity of Rhizobacteria of pearl millet in Semi-arid Agroclimatic Zone. Asian Journal of Plant Science and Research 2 (5):599-606.
  57. Richardson A. 2001. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Australian Journal of Plant Physiology 28:897-906. https://doi.org/10.1071/PP01093
  58. Rodríguez H, Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Research review paper. Biotechnology Advances 17: 319-339. https://doi.org/10.1016/S0734-9750(99)00014-2
  59. Rodríguez H, González T, Selman G. 2000. Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. Journal of Biotechnology 84: 155-161. https://doi.org/10.1016/S0168-1656(00)00347-3
  60. Rodriguez H, Fraga R, González T, Bashan Y. 2006. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and Soil 287:15-21. https://doi.org/10.1007/s11104-006-9056-9
  61. Rooney D, Clipson N. 2009. Phosphate addition and plant species alters microbial community structure in acidic upland grassland soil. Microb. Ecol. 57: 4-13. https://doi.org/10.1007/s00248-008-9399-2
  62. Rosas S, Rovera M, Correa J. 2006. Phosphate-solubilizing Pseudomonas putida can influence the rhizobia-legume simbiosis. Soil. Biol. Biochem. 38: 3502-3505. https://doi.org/10.1016/j.soilbio.2006.05.008
  63. Rubio G. 2002. Conectando el fósforo del suelo con la planta. Informaciones agronómicas del cono sur 16: 19:23.
  64. Scervino M, Prieto M, Ivana M, Recchi M, Sarmiento N, Godeas A. 2010. Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biol. Fertil Soils. 46:755-763. https://doi.org/10.1007/s00374-010-0482-8
  65. Son H, Park G, Cha M, Heo M. 2006. Solubilization of insoluble inorganic phosphates by a novel salt- and pH tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresour. Technol. 97:204-210. https://doi.org/10.1016/j.biortech.2005.02.021
  66. Sylvia M, Fuhrmann J, Hartel P, Zuberer D. 1995. Principles and applications on soil microbiology. Second Edition. Prentice Hall. New Jersey.640p.
  67. Torres M, Lizarazo L. 2006. Evaluación de grupos funcionales (C,N,P) y actividad de la fosfatasa ácida en dos suelos agrícolas del departamento de Boyacá, Colombia. Agronomía Colombiana 24(2): 317- 325.
  68. Urbanek A. 1987. Technical report concerning phosphate fertilizers production from Tachira State rocks phosphate in Venezuela. Warsaw technical Univ. Varsobia. Polonia.
  69. Valero N. 2003. Potencial biofertilizante de bacterias diazotróficas y solubilizadoras de fosfato asociadas al cultivo de arroz (Oriza sativa) (tesis de Maestría en Ciencias - Microbiología). Universidad Nacional de Colombia sede Bogotá.
  70. Vera D, Valencia H, Pérez H. 2002. Aislamiento de hongos solubilizadores de fosfatos de la rizósfera de arazá (Eugenia stipitata, myrtaceae). Acta Biológica Colombiana 7(1):33-40.
  71. Wakelin S, Warren A, Harvey R, Ryder H. 2004. Phosphate solubilization by Penicillium sp. closely associated with wheat roots. Biol. Fert. Soils (40):36-43. https://doi.org/10.1007/s00374-004-0750-6
  72. Xiao C, Chi R, Li X, Xia M, Xia Z. 2011. Biosolubilization of rock phosphate by three stress-tolerant fungal strains. Appl. Biochem. Biotechnol. (165):719-727. https://doi.org/10.1007/s12010-011-9290-3

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

3372 | 3289




 

Creative Commons License

La Revista proporciona acceso abierto y libre a todos sus contenidos; sin barreras legales, económicas o tecnológicas, para lo cual define la siguiente licencia de publicación y uso de los artículos: Licencia de publicación: Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) Texto completo:https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es