Desarrollo y evaluación de un medio de cultivo alternativo para la multiplicación de Azospirillum brasilense C16 mediante diseños estadísticos secuenciados

Publicado
2013-01-17
Sección
Microbiología del suelo
  • Andrés Moreno-Galván CORPOICA
  • Daniel F. Rojas-Tapias CORPOICA
  • Ruth Bonilla CORPOICA

Resumen

Para la producción masiva de inoculantes basados en bacterias promotoras de crecimiento vegetal (PGPR), es fundamental un medio de cultivo de alto rendimiento. La aplicación secuenciada de diseños estadísticos fue usada para optimizar la producción de biomasa de Azospirillum brasilense C16, seis fuentes nutricionales (glicerol, glutamato, manitol, acido cítrico, extracto de levadura y K2HPO4 3H2O) y tres fuentes minerales (MgSO4 7H2O, FeCl3 y NaCl) fueron evaluadas mediante cinco experimentos estadísticos - Placket-Burman, factorial fraccionado, diseño de paso ascendente, análisis de superficie de respuesta y screening mineral, para tal efecto. La composición optimizada del medio (g L-1) fue: 28,33 glutamato, 2,92 extracto de levadura, 1,34 K2HPO4 3H2O, 0,5 MgSO4 7H2O y 0,02 FeCl3, la cual luego de 24 h de incubación permitió producir una cantidad de proteína (32,04 μg) y biomasa seca (1,51 g L-1) del 1,72 y 1,68 veces más alta, respectivamente, en relación al medio de cultivo convencional. 

 

 

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor

Andrés Moreno-Galván, CORPOICA
Centro de Biotecnología y Bioindustria, Mosquera.
Daniel F. Rojas-Tapias, CORPOICA
Centro de Biotecnología y Bioindustria, Mosquera.
Ruth Bonilla, CORPOICA
Centro de Biotecnología y Bioindustria, Mosquera.

Citas

Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M. 2011. Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J Microbiol Biotechnol 27:197-205.

Baldani JI, Krieg NR, Baldani VLD, Hartmann A, Döbereiner J. 2005. Genus II. Azospirillum. In: Brenner DJ, Krieg NR, Garrity GM, editors. Bergey’s manual of systematic bacteriology. Vol II: The Proteobacteria. Part C: The Alpha, Beta, Delta, and Epsilon proteobacteria. 2nd ed. New York: Springer. pp. 7-26.

Bashan Y, de-Bashan LE. 2010. How the plant growth-promoting bacterium Azospirillum promotes plant growth-a critical assessment. Adv Agron 108:77-136.

Bashan Y, Trejo A, de-Bashan LE. 2011. Development of two culture media for mass cultivation of Azospirillum spp. and for production of inoculants to enhance plant growth. Biol Fertil Soil 47:963-969.

Box G, Behnken D. 1960. Some new three level designs for the study of quantitative variables. Technometrics 2:455-475.

Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254.

Cárdenas DM, Garrido MF, Bonilla R, Baldani VL. 2010. Isolation and identification of Azospirillum sp. in Guinea grass (Panicum maximum Jacq.) of the Valle del Cesar. Pasto Forraje 33:285-300.

Díaz-Zorita M, Fernández-Canigia MV. 2009. Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. Eur J Soil Biol 45:3-11.

Dobbelaere S, Okon Y. 2007. The plant growth promoting effect and plant responses. In: Elmerich, C, Newton, WE, editors. Associative and endophytic nitrogen-fixing bacteria and Cyanobacterial associations. Dordrecht, The Netherlands Kluwer Academic Publishers. pp. 1-26.

Hartmann A, Bashan Y. 2009. Ecology and application of Azospirillum and other plant growth-promoting bacteria (PGPB)-special issue. Eur J Soil Biol 45:1-2.

Liu C, Liu Y, Liao W, Wen Z, Chen S. 2003. Application of statisticallybased experimental designs for the optimization of nisin production from whey. Biotechnol Lett 25:877-882.

Mendes AS, de Carvalho JE, Duarte M, Durán N, Bruns RE. 2001. Factorial design and response surface optimization of crude violacein for Chromobacterium violaceum production. Biotechnol Lett 23:1963-1969.

Peña C, Campos N, Galindo E. 1997. Changes in alginate molecular mass distributions, broth viscosity and morphology of Azotobacter vinelandii cultured in shake flasks. Appl Microbiol Biotechnol 48:510-515.

Plackett R, Burman J. 1946. The design of optimum multifactorial experiments. Biometrika 33:305-325.

Ren J, Lin WT, Shen YJ, Wang JF, Luo XC, Xie MQ. 2008. Optimization of fermentation media for nitrite oxidizing bacteria using sequential statistical design. Bioresour Technol 99:7923-7927.

Spaepen S, Vanderleyden J, Remans R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signalling. FEMS Microbiol Rev 31:425-448.

Wang FQ, Gao CJ, Yang CY, Xu P. 2007. Optimization of an ethanol production medium in very high gravity fermentation. Biotechnol Lett 29:233-236.