Contenido principal del artículo

Este estudio evaluó el efecto de inclusión de la harina de tubérculos de taro de rechazo (RTTF) sobre el desempeño productivo en cerdos híbridos comerciales (Landrace × Duroc × Pietrain) durante el período de posdestete. El experimento se estableció bajo un diseño completamente aleatorizado, conformando cuatro tratamientos (0, 10, 20 y 30 % de inclusión de RTTF en la dieta), empleando un total de 60 lechones con 15 repeticiones cada uno. Se determinó el consumo de materia seca diario (CMSD), ganancia de peso diario (GPD), conversión alimentaria (CA), peso final (PF), presencia de diarreas, mortalidad y costo de producción. La RTTF presentó alto contenido de materia seca, extractos libres de nitrógeno, energía bruta, ácido aspártico, ácido glutámico, potasio, hierro, polifenoles y actividad antioxidante. La inclusión de RTTF en la dieta de los cerdos en el periodo completo (30-58 d) no ocasionó diarreas ni muertes y mostró un efecto cuadrático sobre el PF (p < 0,001), CMSD (p < 0,001), y produjo efecto lineal sobre la GPD (p = 0,006), CA (p = 0,003) y costo de producción (p < 0,001). En conclusión, la inclusión de RTTF en la dieta de los cerdos después del destete (30-58 d), entre 0 y 30 %, no mostró efecto sobre el PF y CMSD, con una ligera disminución en la GPD y CA, y con un efecto lineal en la reducción del costo de producción.


 

alimento alternativo, antioxidantes, lechones, prebiótico, subproductos agrícolas
Caicedo, W. O., Alves Ferreira, F. N., Pérez Quintana, M. L., Silva Neta, C. S., & Motta Ferreira, W. (2021). Características químicas de la harina de tubérculos de taro (Colocasia esculenta L. Schott) de rechazo y su efecto sobre el desempeño productivo de cerdos en posdestete . Ciencia & Tecnología Agropecuaria, 22(3), e2345. https://doi.org/10.21930/rcta.vol22_num3_art:2345

Aboubakar, Y., Njintang, Y., Scher, J., & Mbfung, C. (2008). Physicochemical, thermal properties and microestructure of six varieties of taro (Colocasia esculenta L. Schott) flour and starches. Journal of Food Engineering, 86(2), 294-305. https://doi.org/10.1016/j.jfoodeng.2007.10.006

Ahmed, A., & Khan, F. (2013). Extraction of starch from taro (Colocasia esculenta) and evaluating it and further using taro starch as disintegrating agent in tablet formulation with over all evaluation. Inventi Rapid: Novel Excipients, 2, 1-5.

Association of Official Agricultural Chemists [AOAC]. (2005). Official Methods of Analysis (18th ed.).

Aprianita, A., Purwandari, U., Watson, B., & Vasiljevic, T. (2009). Physico-chemical properties of flours and starches from selected commercial tubers available in Australia. International Food Research Journal, 16, 507-520. http://www.ifrj.upm.edu.my/16%20(4)%202009/07%20IFRJ-2008-158%20Todor%20Australia%202nd%20proof.pdf

Aragadvay, R., Núñez, O., Velástegui, G., Villacís, L., & Guerrero, J. (2016). Uso de harina de Colocasia esculenta L., en la alimentación de cerdos y su efecto sobre parámetros productivos. Journal Selva Andina Animal Science, 3(2), 98-104. http://www.scielo.org.bo/pdf/jsaas/v3n2/v3n2_a04.pdf

Araujo, V., Rincón, C., & Padilla, A. (2004). Caracterización del almidón nativo de Dioscorea bulbifera L. Archivos Latinoamericanos de Nutrición, 54(2), 241-245. https://www.alanrevista.org/ediciones/2004/2/art-16/

Arıcı, M., Yıldırım, R. M., Özülkü, G., Yaşar, B., & Toker, O. S. (2016). Physicochemical and nutritional properties of taro (Colocasia esculenta L. Schott) flour as affected by drying temperature and air velocity. LWT - Food Science and Technology, 74, 434-440. https://doi.org/10.1016/j.lwt.2016.08.006

Awa, E., & Eleazu, C. (2015). Bioactive constituents and antioxidant activities of raw and processed cocoyam (Colocasia esculenta). Nutrafoods, 14, 133-140. https://doi.org/10.1007/s13749-015-0033-x

Baião, D., De Freitas, C., Gomes, L., Da Silva, D., Correa, A. C., Pereira, P., Del Aguila, E., & Paschoalin, V. M. (2017). Polyphenols from root, tubercles and grains cropped in Brazil: Chemical and nutritional characterization and their effects on human health and diseases. Nutrients, 9(1044), 1-29. https://doi.org/10.3390/nu9091044

Barszcz, M., Taciak, M., Tuśnio, A., Święch, E., & Skomiał, J. (2020). Dose-dependent effects of two inulin types differing in chain length on the small intestinal morphology, contractility and proinflammatory cytokine gene expression in piglets. Archives of Animal Nutrition, 74(2), 107-120. https://doi.org/10.1080/1745039X.2019.1697140

Bauza, R., González, A., Panissa, G., Petrocelli, H., & Miller, V. R. (2005). Evaluación de dietas para cerdos en recría incluyendo forraje y suero de queso. Revista Argentina de Producción Animal, 25, 11-18. https://www.produccion-animal.com.ar/produccion_porcina/00-produccion_porcina_general/80-Bauza.pdf

Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Analytical Biochemistry, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292

Brito, M., Sánchez, D., Aucancela, M., & Carrión, H. (2017). Estandarización de los costos de producción agropecuaria en el Ecuador. Revista Observatorio Economía Latinoamericana, 232, 1-26. http://www.eumed.net/cursecon/ecolat/ec/2017/costos-produccion-agropecuaria.html

Caicedo, W., Sanchez, J., Tapuy, A., Vargas, J.C., Samaniego, E., Valle, S., Moyano, J., & Pujupat, D. (2018). Apparent digestibility of nutrients in fattening pigs (Largewhite x× Duroc × Pietrain), fed with taro (Colocasia esculenta (L.) Schott) meal. Technical note. Cuban Journal of Agricultural Science, 52(2), 1-6. https://www.cjascience.com/index.php/CJAS/article/view/795

Caicedo, W., & Flores, A. (2020). Características nutritivas de un ensilado líquido de banano orito (Musa acuminata AA) con tubérculos de taro (Colocasia esculenta (L.) Schott) y su efecto en cerdos de post-destete. Revista de Investigaciones Veterinarias del Perú, 31(1), Article e17545. http://dx.doi.org/10.15381/rivep.v31i1.17545

Chandrasekara, A., & Kumar, T. J. (2016). Roots and tuber crops as functional foods: A review on phytochemical constituents and their potential health benefits. International Journal of Food Science, 2016, Article 3631647. https://doi.org/10.1155/2016/3631647

Clark, S., Daly, R., Jordán, E., Lee, J., Mathew, A., & Ebner, P. (2012). Extension Education Symposium: The future of biosecurity and antimicrobial use in livestock production in the United States and the role of extension. Journal of Animal Science, 90(8), 2861-2872. https://doi.org/10.2527/jas.2011-4739

Ebert, A., & Waqainabete, L. (2018). Conserving and sharing taro genetic resources for the benefit of global taro cultivation: A core contribution of the Centre for Pacific Crops and Trees. Biopreservation and Biobanking, 16(5), 361-367. https://doi.org/10.1089/bio.2018.0017

Escobar, J., Asanza, M., Herrera, B., & González, J. (2016). Caracterización físico-química de harinas de especies vegetales para la agroindustria ecuatoriana. Revista Amazónica Ciencia y Tecnología, 5(2), 159-168. https://dialnet.unirioja.es/servlet/articulo?codigo=5761085

Flores, L., Elías, A., Proaño, F., Granizo, G., Medina, Y., López, S., Herrera, F., & Caicedo, W. (2015). Effects of a microbial preparation, a probiotic and commercial antibiotic on the productive performance and pig’s health in post-weaning period. Cuban Journal of Agricultural Science, 49(3), 357-365. https://www.redalyc.org/pdf/1930/193042629013.pdf

Florou-Paneri, P., Christaki, E., Giannenas, I., Bonos, E., Skoufos, I., Tsinas, A., Tzora, A., & Peng, J. (2014). Alternative protein sources to soybean meal in pig diets. Journal of Food, Agriculture & Environment, 12(2), 655-660. https://www.cabdirect.org/cabdirect/abstract/20143310441

Gheisar, M. M., & Kim, I. H. (2018). Phytobiotics in poultry and swine nutrition – a review. Italian Journal of Animal Science, 17(1), 92-99. https://doi.org/10.1080/1828051X.2017.1350120

Gratzfeld-Huesgen, A. (1998). Sensitive and reliable amino acid analysis in protein hydrolysates using the HP 1100 Series HPLC [Technical Note, publication No. 5968-5658E]. Agilent Technologies. https://www.yumpu.com/en/document/read/6655152/sensitive-and-reliable-amino-acid-analysis-in-protein-hydrolysates-

Guevarra, R. B., Lee, J. H., Lee, S. H., Min-Jae, S., Kim, D. W., Kang, B. N., Johnson, T. J., Isaacson, R. E., & Kim, H. B. (2019). Piglet gut microbial shifts early in life: Causes and effects. Journal of Animal Science and Biotechnology, 10(1), 1-10. https://doi.org/10.1186/s40104-018-0308-3

Halas, A., Hansen, C.F., Hampson, D. J., Mullan, B. P., Kim, J. C., Wilson, R. H., & Pluske, J. R. (2010). Dietary supplementation with benzoic acid improves apparent ileal digestibility of total nitrogen and increases villous height and caecal microbial diversity in weaner pigs. Animal Feed Science and Technology, 160(3-4), 137-147. https://doi.org/10.1016/j.anifeedsci.2010.07.001

Huang, C. C., Chen, W. C., & Wang, C. C. (2007). Comparison of Taiwan paddy- and upland-cultivated taro (Colocasia esculenta L.) cultivars for nutritive values. Food Chemistry, 102(1), 250-256. https://doi.org/10.1016/j.foodchem.2006.04.044

Instituto Ecuatoriano de Normalización [INEN]. (2006). Norma Técnica Ecuatoriana NTE INEN 616-2006, Tercera revisión. Harina de trigo: Requisitos. Instituto Ecuatoriano de Normalización. https://www.normalizacion.gob.ec/buzon/normas/616.pdf

Kaur, M., Kaushal, P., & Sandhu, K. S. (2013). Studies on physicochemical and pasting properties of Taro (Colocasia esculenta L.) flour in comparison with a cereal, tuber and legume flour. Journal of Food Science and Technology, 50, 94-100. https://doi.org/10.1007/s13197-010-0227-6

Kumar, V., & Sharma, H. K. (2017). Process optimization for extraction of bioactive compounds from taro (Colocasia esculenta), using RSM and ANFIS modeling. Food Measure, 11, 704-718. https://doi.org/10.1007/s11694-016-9440-y

Lapis, T. J., Penner, M. H., Balto, A. S., & Lim, J. (2017). Oral digestion and perception of starch: Effects of cooking, tasting time, and salivary α-Amylase activity. Chemical Senses, 42(8), 635-645. https://doi.org/10.1093/chemse/bjx042

Liu, D., Liu, H., Li, D., & Wang, F. (2019). Determination of nutrient digestibility in corn and soybean meal using the direct and substitution methods as well as different basal diets fed to growing pigs. Journal of Applied Animal Research, 47(1), 184-188. https://doi.org/10.1080/09712119.2019.1597725

Madrigal-Ambriz, L., Hernández-Madrigal, J., Carranco-Jáuregui, M., Calvo-Carrillo, M., & Casas-Rosado, R. (2018). Caracterización física y nutricional de harina del tubérculo de “Malanga” (Colocasia esculenta L. Schott) de Actopan, Veracruz, México. Archivos Latinoamericanos de Nutrición, 68(2), 175-183. https://www.alanrevista.org/ediciones/2018/2/art-8/

Magalhães, L. M., Segundo, M. A., Reis, S., Lima, J. L., & Rangel, A. O. (2006). Automatic method for the determination of Folin-Ciocalteu reducing capacity in food products. Journal of Agricultural and Food Chemistry, 54(15), 5241-5246. https://doi.org/10.1021/jf060324s

Mergedus, A., Kristl, J., Ivancic, A., Sober, A., Sustar, V., Krizan, T., & Lebot, V. (2015). Variation of mineral composition in different parts of taro (Colocasia esculenta) corms. Food Chemistry, 170, 37-46. https://doi.org/10.1016/j.foodchem.2014.08.025

Ndabikunze, B. K., Talwana, H. A., Mongi, R. J., Isa-Zacharia, A., Serem, A. K., Palapala, V., & Nandi, J. O. (2011). Proximate and mineral composition of cocoyam (Colocasia esculenta L. and Xanthosoma sagittifolium L.) grown along the Lake Victoria Basin in Tanzania and Uganda. African Journal of Food Science, 5(4), 248-254. http://erepo.usiu.ac.ke/bitstream/handle/11732/4515/Proximate%20and%20mineral%20composition%20of%20cocoyam.pdf?sequence=1&isAllowed=y

Nguimbou, R. M., Boudjeko, T., Njintang, N. Y., Himeda, M., Scher, J., & Mbofung, C. M. F. (2014). Mucilage chemical profile and antioxidant properties of giant swamp taro tubers. Journal of Food Science and Technology, 51(12), 3559-3567. https://doi.org/10.1007/s13197-012-0906-6

Njintang, N. Y., Boudjeko, T., Tatsadjieu, L. N., Nguema-Ona, E., Scher, J., & Mbofung, C. M. F. (2014). Compositional, spectroscopic and rheological analysesof mucilage isolated from taro (Colocasia esculenta L. Schott) corms. Journal of Food Science and Technology, 51, 900-907. https://doi.org/10.1007/s13197-011-0580-0

National Research Council [NRC]. (2012). Nutrient Requirements of Swine (11th ed.). National Academies Press.

Ogunlakin, G. O., Oke, M. O., Babarinde, G. O., & Olatunbosun, D. G. (2012). Effect of drying methods on proximate composition and physic-chemical properties of cocoyam flour. American Journal of Food Technology, 7(4), 245-250. https://doi.org/10.3923/ajft.2012.245.250

Organización Panamericana de la Salud [OPS]. (2020). Peligros biológicos. Organización Panamericana de la Salud. https://www.paho.org/hq/index.php?option=com_content&view=article&id=10838:2015-peligros-biologicos&Itemid=41432&lang=es

Pérez, D. M., Soto, L. R., Granadillo, V. A., & Peña, J. L. (2016). Determinación de minerales y caracterización físico-química de la pulpa de lima Tahití (Citrus x latifolia (Yu.Tanaka) Yu.Tanaka). Revista de la Facultad de Agronomía, 33(4), 482-506. https://produccioncientificaluz.org/index.php/agronomia/article/view/27211

Prajapati, R., Kalariya, M., Umbarkar, R., Parmar, S., & Sheth, N. (2011). Colocasia esculenta: A potent indigenous plant. International Journal on Nutrition, Pharmacology, Neurological Diseases, 1(2), 90-96. https://www.ijnpnd.com/text.asp?2011/1/2/90/84188

Púa, A. A., Barreto, G. E., Zuleta, J. L., & Herrera, O. D. (2019). Análisis de nutrientes de la raíz de la Malanga (Colocasia esculenta Schott) en el trópico seco de Colombia. Información Tecnológica, 30(4), 69-76. http://dx.doi.org/10.4067/S0718-07642019000400069

Purwandari, U., Farida, U., Dianing, V. P. P., Sari, L. Y., Kurniawati, A. G., Warnianti, A., & Fauziyah, E. (2018). Texture, sensory, antioxidant, and blood glucose profile of gluten-free taro and banana noodles using gathotan flour as texturing agent. International Food Research Journal, 25(6), 2459-2466. http://www.myjurnal.my/filebank/published_article/83078/30.pdf

R Core Team. (2019). R: A language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Rhouma, M., Fairbrother, J. M., Beaudry, F., & Letellier, A. (2017). Post weaning diarrhea in pigs: risk factors and non-colistin-based control strategies. Acta Veterinaria Scandinavica, 59(1), 1-19. https://doi.org/10.1186/s13028-017-0299-7

Ribeiro, P., Bertozzide, É., Nitzsche, A. C., Afonso, M., & Margaret, V. (2021). Anticancer and Immunomodulatory Benefits of Taro (Colocasia esculenta) Corms, an underexploited tuber crop. International Journal of Molecular Science, 22, 265. https://doi.org/10.3390/ijms22010265

Rice-Evans, C. A., Miller, N. J., Bolwell, P. G., BramLey, P. M., & Pridham, J. B. (1995). The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radical Research, 22(4), 375-383. https://doi.org/10.3109/10715769509145649

Salgado, A. A., & Jiménez, M. T. (2012). Métodos de control de crecimiento microbiano en el pan. Temas Selectos de Ingeniería de Alimentaria, 6(2), 160-172. https://tsia.udlap.mx/metodos-de-control-de-crecimiento-microbiano-en-el-pan/

Satessa, G. D., Tamez-Hidalgo, P., Hui, Y., Cieplak, T., Krych, L., Kjærulff, S., Brunsgaard, G., Nielsen, D. S., & Nielsen, M. O. (2020). Impact of dietary supplementation of lactic acid bacteria fermented rapeseed with or without macroalgae on performance and health of piglets following omission of medicinal zinc from weaner diets. Animals, 10(1), 1-20. https://doi.org/10.3390/ani10010137

Shang, Q., Ma, X., Liu, H., Liu, S., & Piao, X. (2020). Effect of fibre sources on performance, serum parameters, intestinal morphology, digestive enzyme activities and microbiota in weaned pigs. Archives of Animal Nutrition, 74(2), 121-137. https://doi.org/10.1080/1745039X.2019.1684148

Shewry, P. R. (2003). Tuber Storage Proteins. Annals of Botany, 91(7), 755-769.

Simsek, S., & El, S. N. (2015). In vitro starch digestibility, estimated glycemic index and antioxidant potential of taro (Colocasia esculenta L. Schott) corm. Food Chemistry, 168, 257-261. https://doi.org/10.1016/j.foodchem.2014.07.052

Spies, J. R. (1967). Determination of tryptophan in proteins. Analytical Chemistry, 39(12), 1412-1416. https://doi.org/10.1021/ac60256a004

Temesgen, M., & Ratta, N. (2015). Nutritional potential, health and food security benefits of taro Colocasia esculenta (L.): A Review. Food Science and Quality Management, 36, 23-30. https://www.iiste.org/Journals/index.php/FSQM/article/view/19775/20137

Temesgen, M., Retta, N., & Tesfaye, E. (2017). Amino acid and fatty acid composition of Ethiopian taro. American Journal of Food Sciences and Nutrition, 1(1), 1-13. https://ajpojournals.org/journals/index.php/AJFSN/article/view/217

Terasawa, N., Saotome, A., Tachimura, Y., Mochizuki, A., Ono, H., Takenaka, M., & Murata, M. (2007). Identification and some properties of anthocyanin isolated from Zuiki, stalk of Colocasia esculenta. Journal of Agricultural and Food Chemistry, 55(10), 4154-4159. https://doi.org/10.1021/jf063204t

Torres, A., Durán, M., & Montero, P. (2013). Evaluación de las propiedades funcionales del almidón obtenido a partir de malanga (Colocasia esculenta). Revista Ciencias e Ingeniería al Día, 8(2), 29-38. http://hdl.handle.net/11227/5195

Ubalua, A., Ewa, F., & Okeagu, O. (2016). Potentials and challenges of sustainable taro (Colocasia esculenta) production in Nigeria. Journal of Applied Biology & Biotechnology, 4(1), 053-059. https://doi.org/10.7324/JABB.2016.40110

Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Vargas, P., & Hernández, D. (2013). Harinas y almidones de yuca, ñame, camote y ñampí: propiedades funcionales y posibles aplicaciones en la industria alimentaria. Tecnología en Marcha, 26(1), 37-45. https://doi.org/10.18845/tm.v26i1.1120

Yamaguchi, R., Tatsumi, M. A., Karo, K., & Yoshimitsu, U. (1988). Effect of metal salt and fructose on the antioxidation of methyl linoleate in emulsions. Agricultural and Biological Chemistry, 52(3), 849-850. https://doi.org/10.1271/bbb1961.52.849

Yang, C., Chowdhury, M. A., Hou, Y., & Gong, J. (2015). Phytogenic compounds as alternatives to in-feed antibiotics: potentials and challenges in application. Pathogens, 4(1), 137-156. https://doi.org/10.3390/pathogens4010137

Yeoh, H. H., & Chew, M. Y. (1977). Protein content and acid composition of cassava seed and tuber. Malaysian Agricultural Journal, 51(1), 1-6.

Descargas

La descarga de datos todavía no está disponible.

Metricas

Cargando métricas ...

Metricas alternativas PLUMX

Detalles del artículo