Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio

Identificación de adulteraciones en café tostado mediante cromatografía de gases acoplada a espectrometría de masas

Universidad Técnica Particular de Loja
Universidad Técnica Particular de Loja
Universidad Técnica Particular de Loja
análisis de componentes principales cebada cereales compuestos orgánicos volátiles haba microextracción en fase sólida optimización

Resumen

En el mundo, el café es el segundo producto más comercializado después del petróleo. Sin embargo, debido a su elevado precio, suele ser adulterado con materiales de menor costo. El objetivo de la presente investigación fue desarrollar un método basado en la combinación de las técnicas de microextracción de fase sólida (SPME) con la cromatografía de gases acoplado a espectrometría de masas (GC-MS) y el análisis de componentes principales (PCA), para detectar la presencia de haba y/o cebada en café tostado. Además, se optimizó la SPME de compuestos volátiles del café, mediante la metodología de superficie de respuesta. Respecto al método de extracción, se encontró que las condiciones óptimas fueron 16 y 35 min, para el tiempo de equilibrio y extracción, respectivamente. Por otra parte, se identificaron 44, 36 y 24 compuestos, en café, cebada y haba, respectivamente. De acuerdo con nuestro conocimiento, es el primer estudio respecto a la identificación de compuestos volátiles en haba tostada. Finalmente, el método desarrollado permitió detectar la probable presencia de haba en cuatro muestras comerciales de café. Además, se descartó la presencia de cebada en estas muestras.

Campoverde León, J. D. . . ., K. . . . . Santín, y J. G. Figueroa. «Identificación De Adulteraciones En Café Tostado Mediante cromatografía De Gases Acoplada a espectrometría De Masas». Ciencia &Amp; Tecnología Agropecuaria, vol. 23, n.º 1, enero de 2022, doi:10.21930/rcta.vol23_num1_art:2265.
  1. Akkad, R., Kharraz, E., Han, J., House, J. D., & Curtis, J. M. (2019). Characterisation of the volatile flavour compounds in low and high tannin faba beans (Vicia faba var. minor) grown in Alberta, Canada. Food Research International, (120), 285-294. https://doi.org/10.1016/j.foodres.2019.02.044.
  2. Aquino, F. J. T., Augusti, R., Alves, J. d. O., Diniz, M. E. R., Morais, S. A. L., Alves, B. H. P., Nascimento, E. A., & Sabino, A. A. (2014). Direct infusion electrospray ionization mass spectrometry applied to the detection of forgeries: Roasted coffees adulterated with their husks. Microchemical Journal, 117, 127-132. https://doi.org/10.1016/j.microc.2014.06.016.
  3. Bansal, S., Singh, A., Mangal, M., Mangal, A. K., & Kumar, S. (2017). Food adulteration: sources, health risks, and detection methods. Critical Reviews in Food Science and Nutrition, 57(6), 1174-1189. https://doi.org/10.1080/10408398.2014.967834.
  4. Beal, A. D., & Mottram, D. S. (1994). Compounds contributing to the characteristic aroma of malted barley. Journal of Agricultural and Food Chemistry, 42(12), 2880-2884. https://doi.org/10.1021/jf00048a043.
  5. Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965-977. https://doi.org/10.1016/j.talanta.2008.05.019
  6. Bianchi, F., Careri, M., Conti, C., Musci, M., & Vreuls, R. (2007). Comparison of comprehensive two‐dimensional gas chromatography‐time‐of‐flight mass spectrometry and gas chromatography‐mass spectrometry for the qualitative characterisation of roasted barley by solid‐phase microextraction. Journal of Separation Science, 30(4), 527-533. https://doi.org/10.1002/jssc.200600380.
  7. Cai, T., Ting, H., & Jin-lan, Z. (2016). Novel identification strategy for ground coffee adulteration based on UPLC–HRMS oligosaccharide profiling. Food Chemistry, 190, 1046-1049. https://doi.org/10.1016/j.foodchem.2015.06.084.
  8. Costa Freitas, A., Parreira, C., & Vilas-Boas, L. (2001). Comparison of two SPME fibers for differentiation of coffee by analysis of volatile compounds. Chromatographia, 54, 647-652. https://doi.org/10.1007/BF02492193.
  9. de Moura Ribeiro, M. V., Boralle, N., Pezza, H. R., Pezza, L., & Toci, A. T. (2017). Authenticity of roasted coffee using1 H NMR spectroscopy. Journal of Food Composition and Analysis, 57, 24-30. https://doi.org/10.1016/j.jfca.2016.12.004.
  10. Figueroa, J. G., & Vargas, L. F. (2016). Evaluación de DES, FSC Y SPME/CG-MS para la extracción y determinación de compuestos responsables del aroma de café tostado de Vilcabamba-Ecuador. Química Nova, 39(6), 712-719. https://doi.org/10.5935/0100-4042.20160077.
  11. Flament, I. (2001). Coffee flavor chemistry. John Wiley & Sons.
  12. Food and Agriculture Organization of the United Nations [FAO]. (2020). FAOSTAT. http://www.fao.org/faostat/es/#data/QC.
  13. Franca, A. S., Oliveira, L. S., Oliveira, R. C., Agresti, P. C. M., & Augusti, R. (2009). A preliminary evaluation of the effect of processing temperature on coffee roasting degree assessment. Journal of Food Engineering, 92(3), 345-352. https://doi.org/10.1016/j.jfoodeng.2008.12.012.
  14. International Coffee Organization. (2018). Historical data on the global coffee trade. http://www.ico.org/new_historical.asp.
  15. International Trade Centre. (2011). The Coffee Exporter’s Guide. International Trade Centre. Geneva, Switzerland. https://www.intracen.org/uploadedFiles/intracenorg/Content/Publications/ITC_Coffee_4th_Report_20210930_web_pages.pdf
  16. Jeleń, H., Krawczyk, J., Larsen, T., Jarosz, A., & Gołębniak, B. (2005). Main compounds responsible for off‐odour of strawberries infected by Phytophthora cactorum. Letters in Applied Microbiology, 40, 255-259. https://doi.org/10.1111/j.1472-765X.2005.01668.x.
  17. Jham, G. N., Winkler, J. K., Berhow, M. A., & Vaughn, S. F. (2007). γ-Tocopherol as a marker of Brazilian coffee (Coffea arabica L.) adulteration by corn. Journal of Agricultural and Food Chemistry, 55(15), 5995-5999. https://doi.org/10.1021/jf070967n.
  18. Korhoňová, M., Hron, K., Klimčíková, D., Müller, L., Bednář, P., & Barták, P. (2009). Coffee aroma—statistical analysis of compositional data. Talanta, 80(2), 710-715. https://doi.org/10.1016/j.talanta.2009.07.054.
  19. Kotowska, U., Żalikowski, M., & Isidorov, V. A. (2012). HS-SPME/GC–MS analysis of volatile and semi-volatile organic compounds emitted from municipal sewage sludge. Environmental Monitoring and Assessment, 184, 2893-2907. https://doi.org/10.1007/s10661-011-2158-8.
  20. Leffingwell, J. C., & Alford, E. (2005). Volatile constituents of perique tobacco. Electronic Journal of Environmental, Agricultural and Food Chemistry, 4(2), 899-915. https://www.leffingwell.com/download/Volatile%20Constituents%20of%20Perique%20Tobacco4.pdf
  21. Leffingwell, J. C., & Alford, E. (2011). Volatile constituents of the giant puffball mushroom (Calvatia gigantea). Leffingwell Reports, 4, 1-17. https://www.researchgate.net/publication/245024388_Volatile_Constituents_of_the_Giant_Puffball_Mushroom_Calvatia_gigantea
  22. Liu, Y., Xu, X., & Zhou, G. (2007). Comparative study of volatile compounds in traditional Chinese Nanjing marinated duck by different extraction techniques. International Journal of Food Science & Technology, 42(5), 543-550. https://doi.org/10.1111/j.1365-2621.2006.01264.x.
  23. Maga, J. A. (1978). Cereal volatiles, a review. Journal of Agricultural and Food Chemistry, 26(1), 175-178. https://pubs.acs.org/doi/pdf/10.1021/jf60215a055
  24. Majcher, M. A., Klensporf-Pawlik, D., Dziadas, M., & Jeleń, H. H. (2013). Identification of aroma active compounds of cereal coffee brew and its roasted ingredients. Journal of Agricultural and Food Chemistry, 61(11), 2648-2654. https://doi.org/10.1021/jf304651b.
  25. Oliveira, R. C., Oliveira, L. S., Franca, A. S., & Augusti, R. (2009). Evaluation of the potential of SPME-GC-MS and chemometrics to detect adulteration of ground roasted coffee with roasted barley. Journal of Food Composition and Analysis, 22(3), 257-261. https://doi.org/10.1016/j.jfca.2008.10.015.
  26. Oomah, B. D., Razafindrainibe, M., & Drover, J. C. (2014). Headspace volatile components of Canadian grown low‐tannin faba bean (Vicia faba L.) genotypes. Journal of the Science of Food and Agriculture, 94(3), 473-481. https://doi.org/10.1002/jsfa.6272.
  27. Pauli, E. D., Barbieri, F., Garcia, P. S., Madeira, T. B., Junior, V. R. A., Scarminio, I. S., da Camara, C. A. P., & Nixdorf, S. L. (2014). Detection of ground roasted coffee adulteration with roasted soybean and wheat. Food Research International, 61, 112-119. https://doi.org/10.1016/j.foodres.2014.02.032.
  28. Pino, J. A., Márquez, E., Quijano, C. E., & Castro, D. (2010). Compostos voláteis em noni (Morinda citrifolia L.) em dois estágios de maturação. Food Science and Technology, 30(1), 183-187. https://doi.org/10.1590/S0101-20612010000100028.
  29. Ramalho, P. S., de Freitas, V. A., Macedo, A., Silva, G., & Silva, A. M. (1999). Volatile components of Cistus ladanifer leaves. Flavour and Fragrance Journal, 14(5), 300-302. https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1099-1026(199909/10)14:5%3C300::AID-FFJ830%3E3.0.CO;2-X
  30. Reis, N., Botelho, B. G., Franca, A. S., & Oliveira, L. S. (2017). Simultaneous detection of multiple adulterants in ground roasted coffee by ATR-FTIR spectroscopy and data fusion. Food Analytical Methods, 10, 2700-2709. https://doi.org/10.1007/s12161-017-0832-3.
  31. Risticevic, S., Carasek, E., & Pawliszyn, J. (2008). Headspace solid-phase microextraction–gas chromatographic–time-of-flight mass spectrometric methodology for geographical origin verification of coffee. Analytica Chimica Acta, 617(1-2), 72-84. https://doi.org/10.1016/j.aca.2008.04.009.
  32. Sezer, B., Apaydin, H., Bilge, G., & Boyaci, I. H. (2018). Coffee arabica adulteration: Detection of wheat, corn and chickpea. Food Chemistry, 264, 142-148. https://doi.org/10.1016/j.foodchem.2018.05.037.
  33. Song, H. Y., Jang, H. W., Debnath, T., & Lee, K. G. (2019). Analytical method to detect adulteration of ground roasted coffee. International Journal of Food Science & Technology, 54(1), 256-262. https://doi.org/10.1111/ijfs.13942.
  34. Souto, U. T. d. C. P., Barbosa, M. F., Dantas, H. V., de Pontes, A. S., da Silva Lyra, W., Diniz, P. H. G. D., de Araújo, M. C. U., & da Silva, E. C. (2015). Identification of adulteration in ground roasted coffees using UV–Vis spectroscopy and SPA-LDA. LWT-Food Science and Technology, 63(2), 1037-1041. https://doi.org/10.1016/j.lwt.2015.04.003.
  35. Specialty Coffee Association. (2003). Cupping Protocols. https://sca.coffee/research/protocols-best-practices.
  36. Su, Y., Wang, C., & Guo, Y. (2009). Analysis of volatile compounds from Mentha hapioealyx Briq by GC-MS based on accurate mass measurement and retention index. Acta Chimica Sinica, 67, 546-554. https://www.researchgate.net/publication/286396280_Analysis_of_volatile_compounds_from_Mentha_hapioealyx_Briq_by_GC-MS_based_on_accurate_mass_measurement_and_retention_index
  37. Tavares, K. M., Lima, A. R., Nunes, C. A., Silva, V. A., Mendes, E., Casal, S., & Pereira, R. G. A. (2016). Free tocopherols as chemical markers for Arabica coffee adulteration with maize and coffee by-products. Food Control, 70, 318-324. https://doi.org/10.1016/j.foodcont.2016.06.011.
  38. Toci, A. T., Farah, A., Pezza, H. R., & Pezza, L. (2016). Coffee adulteration: More than two decades of research. Critical Reviews in Analytical Chemistry, 46(2), 83-92. https://doi.org/10.1080/10408347.2014.966185.
  39. Villarreal Andrade, A. E. (2013). Obtención de un sucedáneo del café a partir de haba y fréjol tostados [Tesis de pregrado, Universidad Central del Ecuador]. http://www.dspace.uce.edu.ec/bitstream/25000/892/1/T-UCE-0017-21.pdf.
  40. Wang, P. S., Kato, H., & Fujimaki, M. (1968). Studies on flavor components of roasted barley: Part II. The major volatile carbonyl compounds. Agricultural and Biological Chemistry, 32(4), 501-506. https://doi.org/10.1080/00021369.1968.10859083.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

356 | 308




 

Creative Commons License Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2021 Ciencia & Tecnología Agropecuaria