Evaluación de respuestas fisiológicas de la planta arbórea Hibiscus rosasinensis L, (Cayeno) en condiciones de campo y vivero

Publicado
2010-06-30
Sección
Fisiología vegetal

Palabras clave

Hibiscus rosa-sinensis; Silvopastoreo; Agroforestería; Forrajes; Tasa de crecimiento relativo
  • Nestor Dario Cuéllar Universidad de Cundinamarca, Fusagasugá
  • Juan Manuel Arrieta Herrera Universidad de Cundinamarca, Fusagasugá.

Resumen

Con la finalidad de conocer y entender las características fisiológicas y productivas de especies forrajeras con una alta potencialidad para ser involucradas dentro de los sistemas silvo-pastoriles, se llevó a cabo el presente estudio sobre Hibiscus rosa-sinensis. Las plantas se ubicaron bajo condiciones de vivero (17°C) y siembra directa en campo (22°C), en la estación experimental La Esperanza, localizada en el municipio de Fusagasugá (Cundinamarca, Colombia) a 4°16´34´´ N y 23´11´´ W, 1750 msnm, 20°C de temperatura promedio, 1200 mm./año, el 81% de humedad relativa y 1387 horas de luz/año. Los muestreos se realizaron cada ocho (8) días y se evaluaron los estados de crecimiento y desarrollo de la especie forrajera Hibiscus y el modelo de distribución radicular. Cuando la planta de Hibiscus rosa-sinensis se desarrolla bajo condiciones de vivero se genera un modelo de raíz gravitrópico, fuerte, con dos raíces principales pivotantes, con abundantes y extensas raíces laterales primarias y secundarias (Modelo Tsutsumi et al, 2003); por el contrario, en campo el modelo predice que las plantas desarrollan un modelo radicular plagio-gravitrópico superficial; a los 105 días la relación raíz:brote (R:B) es muy deficiente (0,16), frente a las de vivero (0,25). Las dos (2) raíces principales y las laterales primarias y secundarias no son muy abundantes. Hasta los 105 días después de la siembra, las plantas bajo las condiciones de vivero son superiores a las establecidas en siembra directa en su índice de área foliar (IAF), área foliar efectiva (AFE), tasa de asimilación neta (TAN) y, por consiguiente, en su tasa de crecimiento relativo (TCR); a partir de este tiempo, las plantas en campo comienzan una fase de crecimiento exponencial, como lo mostró la TCR y la TAN. La especie Hibiscus rosa-sinensis necesariamente requiere una fase de vivero de hasta los 98 o 105 días. El sistema de raíz desarrollado por la planta permite conocer que la fertilización temprana no sería viable y que ésta se puede realizar a partir de los 60 días después del transplante, cuando el desarrollo alométrico de la planta es equilibrado. Las tasas e índices fisiológicos (TAN, RAF, AFE, IAF, TCR) nos permiten proponer la especie Hibiscus rosa-sinensis como una planta óptima para los sistemas de silvopastoreo y planificar las labores culturales y agronómicas como especie forrajera.

 

 

Descargas

No hay datos de descargas disponibles

Biografía del autor

Nestor Dario Cuéllar, Universidad de Cundinamarca, Fusagasugá
Trabajo de grado. Programa: Ingeniería Agronómica, 2009.
Juan Manuel Arrieta Herrera, Universidad de Cundinamarca, Fusagasugá.
Docente TCO. Programa: Ingeniería Agronómica.
¿Cómo citar?
CUÉLLAR, Nestor Dario; ARRIETA HERRERA, Juan Manuel. Evaluación de respuestas fisiológicas de la planta arbórea Hibiscus rosasinensis L, (Cayeno) en condiciones de campo y vivero. Corpoica Ciencia y Tecnología Agropecuaria, [S.l.], v. 11, n. 1, p. 61-72, june 2010. ISSN 2500-5308. Disponible en: <http://revista.corpoica.org.co/index.php/revista/article/view/196>. Fecha de acceso: 17 oct. 2017 doi: https://doi.org/10.21930/rcta.vol11_num1_art:196.

Citas

Antúnez, I.; Retamosa, E.C.; Villar, R. (2001). Relative Growth Rate in Phylogenetically Related Deciduous and Evergreen Woody Species. Oecologia 128: 172-180.

Altieri, M.A. (1997). Agroecología: bases científicas para una agricultura sustentables. Clades. La Habana, Cuba. 249 p.

Amaro, J.A.; García, E.; Henríquez, J.F. (2004). Análisis del crecimiento, área foliar especifica y concentración de nitrógeno en hojas del pasto “mulato” (Brachiaria hibrido, cv.). Tecnología Pecuaria Mexicana 42 (3): 447-458.

Amato, M.; Ritchie, J.T. (2002). Spatial Distribution of Roots and Water Uptake of Maize (Zea mays L.) as Affected by Soil Structure. Crop Sci. 42: 773-780.

Andrade, F.; Uhart, S.A. y Frugone, M.I. (1993). Intercepted Radiation at Flowering and Kernel Number in Maize: Shade vs. Plant Density Effects. Crop Science, 33: 482-485.

Andrews, M.; Raven, J.A.; Sprent, J.I. (2001). Environmental Effects on Dry Matter Partitioning Between Shoot and Root of Crop Plants: Relations with Growth and Shoot Protein Concentration. Annals of Applied Biology 138: 57-68.

Azofeifa, A.; Moreira, M. (1998). Análisis del crecimiento del chile dulce (Capsicum annuum L.) cultivar UCR 589 en Alajuela, Costa Rica. Boletín Técnico Estación Experimental Fabio Baudrit M. 31(1): 1-12.

Badger, M.R.; Bjorkman, O.; Armond, P.A. (1982). An Analysis Ofphotosynthetic Response and Adaptation to Temperature in Higher Plants: Temperature Acclimation in the Desert Evergreen Nerium Oleander L. Plant Cell and Environment 5: 85-99.

Barraza, F.; Fischer, G.; Cardona, C.E. (2004). Estudio del proceso de crecimiento del cultivo del tomate (Lycopersicon esculentum Mill.) en el Valle del Sinú medio, Colombia. Agronomía Colombiana, 22 (1): 81-90.

Beer, J.; Muschler, R.; Kass, D.; Somarriba, E. (1998). Shade Management Coffee and Cacao Plantations. Agroforestry Systems 38: 139–164.

Berry, J.; Bjorkman, O. (1980). Photosynthetic Response and Adaptation to Temperature in Higher Plants. Annual Review of Plant Physiology 31: 491-543.

Bloom, A.J.; Meyerhoff, P.A.; Taylor, A.R.; Rost, T.L. (2002). Root Development and Absorption of Ammonium and Nitrate From the Rhizosphere. Journal of Plant Growth Regulation 21: 416-431.

Bolio, R.E.; Lara, P.E.; Magaña, M.A. (2006). Producción forrajera del tulipán (Hibiscus rosa-sinensis) según intervalo de corte y densidad de siembra. Tec. Pecu. Mex 44(3): 379-388.

Brooks, T.J.; Wall, G.W.; Pinter, P.J. Jr.; Kimball, B.A.; La Morte, R.L.; Leavitt, S.W. (2000). Acclimation Response of Spring Wheat in a Free-air CO2 Enrichment (Face) Atmosphere with Variable Soil Nitrogen Regimes. Canopy Architecture and Gas Exchange, Photosynthesis Research 66: 97-108.

Campbell, C.S.; Heilman, J.L.; McInnes, K.J.; Wilson, L.T.; Medley, J.C.; Wu, G.; Cobos, D.R. (2001). Seasonal Variation in Radiation Use Eficiency of Irrigated Rice. Agricultural and Forest Meteorology 110: 45-54.

Canham, C.D.; Kobe, R.K.; Latty, E.F.; Chazdon, R.L. (1999). Interspecific and Intraspecific Variation in Tree Seedling Survival: Effects of Allocation to Roots Versus Carbohydrate Reserves. Oecologia 121: 1-11.

Castro-Díez, P.; Puyravaud, J.P.; Cornelissen, J.H. (2000). Leaf Structure and Anatomy as Related to Leaf Mass per Area Variation in Seedling of a Wide Range of Woody Plant Species and Types. Oecologia 124: 476-486.

Cock, J.H.; El-Sharkawy, M.A. (1988). Physiological Characteristics for Cassava Selection. Experimental Agriculture 24(4): 443-448.

Cornelissen, J.H.; Castro-Diez, P.; Hunt, R. (1996). Seedling Growth, Allocation and Leaf Attributes in a Wide Range of Woody Plant Species and Types. Journal of Ecology 84: 755-765.

Cowling, S.A.; Field, C.B. (2003). Environmental Control of Leaf Area Production: Implications for Vegetation and Land-surface Modeling. Global Biogeochemical CycIes 17: 1-14.

Currie, H.; Perry, C. (2007). Silica in Plants: Biological, Biochemical and Chemical Studies. Annals of Botany 100: 1383-1389.

Del Pozo, P.P.; Jérez, I.; Mesa, B.; Padilla, P.; Ginoria, J. (1999). Comportamiento productivo de un agroecosistema silvopastoril asociado con Leucaena leucocephala y Cynodon nlemfuensis. En: Primer Congreso Latino Americano de Agroforestería para la Producción Animal Sostenible. Fundación Cipav, Cali, Colombia. 47 p.

Drake, B.G.; González-Meler, M.A.; Long, S.P. (1997). More Eficient Plants: a Consequence of Rising Atmospheric C02? Annual Review of Plant Physiology and Plant Molecular Biology 48: 609-639.

Dubrovsky, J.; Gambetta, G.A.; Hernández-Barrera, A.; Shishkova, S.; González, L. (2006). Lateral Root Initiation in Arabidopsis: Developmental Window, Spatial Patteming, Density and Predictability. Annals of Botany 97: 903-915.

Ewert, F.; Pleijel, H. (1999). Phenological Development, Leaf Emergence, Tillering and Leaf Area Index, and Duration of Spring Wheat Across Europe in Response to CO2 and Ozone. European Journal of Agronomy 10: 171-184.

Farquhar, G.D.; von Caemmerer, S.; Berry, J.A. (1980). A Biochemical Model of Photosynthetic C02 Assimilation in Leaves ofC3 Plants. Planta 149: 78-90.

Ferrar, P.J.; Slatyer, R.O.; Vranjic, J.A. (1989). Photosynthetic Temperature Acclimation in Eucalyptus Species From Diverse Habitats and a Comparison with Nerium Oleander. Australian Journal of Plant Physiology 16: 199-217.

Forde, B.G.; Lorenzo, H. (2001). The Nutritional Control of Root Development. Plant and Soil 232: 51-68.

Forde, B.G. (2002). Local and Long-range Signaling Pathways Regulating Plant Responses to Nitrate. Annual Review of Plant Biology 53: 203-204.

Gardner, F.P.; Pearce, R.B.; Mitchell, R.L. (1990). Physiology of Crop Plants. Second edition. Iowa State Press, Ames. 327 p.

Gardner, B.R.; Pearce, R.B. y Michell, R.L. (1985). Physiology of Crops Plants. Iowa State University Press. USA. S.P.

Garnier, E. (1992). Growth Analysis of Congeneric Annual and Perennial Grass Species. Journal of Ecology 80: 665-675.

Garnier, E.; Laurent, G. (1994). Leaf Anatomy, Specific Mass and Water Content in Congeneric Annual and Perennial Grass Species. New Phytologist 128: 725-736.

Gil, A.I. y Miranda, D. (2007). Efecto de cinco sustratos sobre índices de crecimiento de plantas de papaya (Carica papaya L.) bajo invernadero. Revista Colombiana de Ciencias Hortícolas. Vol. 1. N° 2: 142-153.

Gómez, M.H.; Murgueito, E.; Molina, C.H. (1995). Matarratón (Gliricidia sepium) En: Árboles y arbustos forrajeros utilizados en la alimentación animal como fuente proteica. Centro para la investigación de sistemas sostenibles de producción. Cali, Colombia, 13 p.

Gray, W.M.; Muskett, P.R.; Chuang, H.W.; Parker, J.E. (2003). Arabidopsis SGTlb is Required for ScftirlMediated Auxin Response. Plant Cell 15: 1310-1319.

Hartz-Rubin, J.S.; De Lucia, E.H. (2001). Canopy Development of a Mode Herbaceous Community Exposed to Elevated Atmospheric CO2 and Soil Nutrients. Physiologia Plantarum 113: 258-266.

Hikosaka, K.; Murakami, A.; Hirose, T. (1999). Balancing Carboxylation and Regeneration Ofribulose-l,5Bisphosphate in Leaf Photosynthesis in Temperature Acclimation of an Evergreen Tree, Quercus myrsinaefolia. Plant Cell and Environment 22: 841-849.

Hikosaka, K.; Ishikawa, K.; Borjigidai, A.; Muller, O.; Onoda, Y. (2006). Temperature Acclimation of Photosynthesis: Mechanisms Involved in the Changes in Temperature Dependence of Photosynthetic Rate. Journal of Experimental Botany. Vol. 57. N° 2: 291–302.

Hirose, T.; Ackerly, D.D.; Traw, M.B.; Ramseier, D.; Bazzaz, F.A. (1997). CO2 Elevation, Canopy Photosynthesis, and Optimalleaf Area Index. Ecology 78: 2339-2350.

Hunt, R.; Causton, D.R.; Shipley, B.; Askew, A.P. (2002). A Modern Tool for Classical Growth Analysis. Annals of Botany 90: 485-488.

Jarvis, P.; Leverenz, J.W. (1983). Productivity Oftemperate, Deciduous and Evergreen Forests. Springer, Berlin, Heidelberg, New York: 1-40.

Kimball, B.A.; Kobayashi, K.; Bindi, M. (2002). Responses of Agricultural Crops to Free-air C02 Enrichment. Advances in Agronomy 77: 293±368.

Korner, C. (1991) Some Often Overlooked Plant Characteristics as Determinants of Plant Growth: a Considerations. Funct Ecol (5): 162-173.

Kozlowski, T.; Kramer, P.; Pallarady, S. (1991). The Physiological Ecology of Woody Plants. Academic Press. New York. S.P.

Kruse, J.; Hetzger, L.; Hansch, R.; Mendel, R.R.; Walch-Liu, P.; Engels, C. (2002). Elevated C02 Favours Nitrate Reduction in the Roots of Wildtype Tobacco (Nicotiana tabacum cv. Gat.) and Significantly Alters N-metabolism in Transformants Lacking Functional Nitrate Reductase in the Roots. Journal of Experimental Botany 53: 2351-2367.

Lambers, H.; Poorter, H. (1992). Inherent Variation in Growth Rate Between Higher Plants: A Search for Physiological Causes and Ecological Consequences. Advances in Ecological Research 23: 187-261.

Larcher, W. (2005). Physiological Plant Ecology. Pringer-Verlag. S.P.

Lemus, L.H.; Lemus, V.E. (2004). Plantas de uso forrajero en el trópico cálido y templado de Colombia. Tercera edición, Unillanos: 344-346.

Lusk, C.H.; Contreras, O.; Figueroa, J. (1997). Growth, Biomass Allocation and Plant Nitrogen Concentration in Chilean Temperate Rainforest Tree Seedlings: Effects of Nutrient Availability. Oecologia 109: 49-58.

Makino, A.; Nakano, H.; Mae, T. (1994). Effects of Growth Temperature on the Responses of Ribulose-l,5Bisphosphate Carboxyase, Electron Transport Components, and Sucrose Synthesis Enzymes to Leaf Nitrogen in Rice, and Their Relationships to Photosynthesis. Plant Physiology 105: 1231-1238.

Marañón, T.; Grubb, P.J. (1993). Physiological Basis and Ecological Significance of the Seed Size and Relative Growth Rate Relationship in Mediterranean Annuals. Functional Ecology 7: 591-599.

Monteith, J.L. 1977. Climate and the Efficiency of Crop Production in Britain. Philosophical Transactions of the Royal Society of London. Series B 281: 277-294.

Murchie, E.H.; Hubbart, S.; Chen, Y.; Peng, S.; Horton, P. (2002). Acclimation of Rice Photosynthesis to Irradiance under Field Conditions. Plant Physiology Vol. 130: 1999–2010.

Nygren, P.; Kiema, P.; Rebottaro, A. (1996). Canopy Development, CO2 Exchange and Carbon Balance of a Modeled Agroforestry Tree. Tree Physiology 16: 733.

Pereira, J.S. (1994). Gas Exchange and Growth. In: Schulze, E.D.; Caldwell, M.M. (editors). Ecophysiology of Photosynthesis. Springer-Verlag, Berlin, Alemania: 147-181.

Poorter, H. (1989a). Growth Analysis: Towards a Synthesis of the Classical and the Functional Approach. Physiologic Plantarum 75: 237-244.

Poorter, H. (1989b). Interspecific Variation in Relative Growth Rate: On Ecological Causes and Physiological Consequences. In: Lambers, H.; Cambridge, M.L.; Konings, H.: 45-68.

Poorter, H.; Remkes, C.; Lambers, H. (1990). Carbon and Nitrogen Economy of 24 Wild Species Differing in Relative Growth Rate. Plant Physiology 94: 621-627.

Porter, H. (2002). Environrnental Sensing and Directional Growth of Plant Roots. In: Waisel, Y.; Eshel, A.; Kafkafi, U: eds. Plant Roots: the Hidden Half. New York: Marcel Dekker: 471-487.

Raven, J.A.; Andrews, M.; Quigg, A. (2005). The Evolution of Oligotrophy: Implications for the Breeding of Crop Plants for Low Input Agricultural Systems. Annals of Applied Biology 146: 261-280.

Reich, P.B.; Walters, M.E.; ElIsworth, D.S.; Uhi, C. (1994). Photosynthesisnitrogen Relations in Amazonian Tree Species: 1. Pattems Among Species and Communities. Oecologia 97: 62-72.

Rochette, P.; Desjardins, R.L.; Pattey, E.; Lessard, R. (1995). Crop Net Carbon Dioxide Exchange Rate and Radiation Use Efficiency in Soybean. Agronomy Journal 87: 22-28.

Rochette, P.; Desjardins, R.L.; Pattey, E.; Lessard, R. (1996). Instantaneous Measurement of Radiation and Water Use Efficiencies of a Maize Crop. Agronomy Journal 88: 627-635.

Rodriguez, D.; Ewert, F.; Goudriaan, J.; Manderscheid, R.; Burkart, S.; Weigel, H.J. (2001). Modeling the Response of Wheat Canopy Assimilation to Atmospheric C02 Concentrations. New Phytologist 150: 337-346.

Reffye, P.; Heuvelink, E.; Barthelemy, D. (2008). Plant Growth Models. Encyclopedia of Ecology. 2837 p.

Scheible, W.R.; Morcuende, R.; Czechowski, T.; Fritz, C.; Osuna, D.; Palacios-Rojas, N. (2004). Genome-wide Reprogramming of Primary and Secondary Metabolism, Protein Synthesis, Cellular Growth Processes, and the Regulatory Infrastructure of Arabidopsis in Response to Nitrogen. Plant Physiology 136: 2483-2499.

Shibles, R. (1987). Crop Physiology. Iowa, USA, Iowa State University. 214 p.
Shipley, B. (2002). Trade-offs Between Net Assimilation Rate and Specific Leaf Area in Determining Relative Growth Rate: Relationship with Daily Irradiance. Functional Ecology 16: 682-689.

Schulze, E.D.; Caldwell, M.M. (1995). Ecophysiology of Photosynthesis. Editorial Springer. 576 p. New York, USA.

Stitt, M.; Scheible, W.R. (1999). Nitrate Acts as a Signal to Control Gene Expression, Metabolism and Biomass Allocation. In: Kruger, N.; Hill, S.A.; Ratcliffe, R.G. eds. Regulation of Metabolism Dordrecht. Kluwer Academic Publisher: 275-306.

Tardieu, F. (1987). Etat Structural, Enracinement et Alimentation Hydrique du Mais. II. Disponibilité des Reseves en Eau du Sol. Agronomie 7(4): 279-288.

Tardieu, F. (1988b). Analysis of the Spatial Variability in Maize Root Density. Effect of a Wheel Compaction on Water Extraction. Plant Soil. V. 109: 257-262.

Tardieu, F.; Manichon, F. (1986). Caractérisation en Tant que Capteur d’eau de l’enracinement du Mais en Parcelle Cultivée. Discussion des Critères d’etude. Agronomie 6(4): 345-354.

Tardieu, F.; Bruckler, L.; Lafolie, F. (1992). Root Clumping May Affect the Root Water Potential and the Resistance to Soil-root Water Transport. Plant Soil 140: 291-301.

Tsutsumi, D.; Kosugi, K.; Mizuyama, T. (2003). Root-System Development and Water-Extraction Model Considering Hydrotropism Soil. Sci. Am. J. 67: 387-401.

Veneklaas, E.J.; Poorter, L. (1998). Growth and Carbon Partitioning of Tropical Tree Seedlings in Contrasting Light Environments. In: Lambers, H.; Poorter, H.; van Vuuren, I. (editors). Inherent Variation in Plant Growth. Backhuys Publishers, Leiden, Países Bajos: 337-361.

Villar, R.; Marañón, T.; Quero, J.L.; Panadero, P.; Arenas, F.; Lambers, M. (2004) Variation in Growth Rate of 20 Aegilops Species (Poaceae) in the Field: The Importance of Net Assimilation Rate or Specific Leag Rea Depends or the Time Scale. Plant and Soil 8: 1-17.

Wright, I.J.; Westoby, M. (2000). Cross-species Relationships Between Seedling Relative Growth Rate, Nitrogen Productivity and Root vs. Leaf Function in 28 Australian Woody Species. Functional Ecology 14: 97-107.

Yamasaki, T.; Yamakawa, T.; Yamane, Y.; Koike, H.; Satoh, K.; Katoh, S. (2002). Temperature Acclimation of Photosynthesis and Related Changes in Photosystem II Electron Transport in Winter Wheat. Plant Physiology 128: 1087-1097.