Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio

Indicadores de sostenibilidad agrícola asociados a propiedades, procesos y manejo del suelo

Universidad Nacional de Colombia
Universidad de Bogotá Jorge Tadeo Lozano
Universidad Nacional de Colombia
manejo del suelo propiedades físico-químicas del suelo sistemas agrícolas sostenibilidad uso sostenible

Resumen

Las evaluaciones de sostenibilidad son el mecanismo más adecuado para determinar si un método, alternativa o tendencia de producción de cultivos es viable desde el punto de vista ambiental, económico y social. Estas evaluaciones se realizan por medio de herramientas basadas en indicadores, algunos asociados con las propiedades, la composición, los procesos y el manejo del suelo. En esta revisión se ofrece una visión global del efecto de las actividades de manejo del suelo sobre la sostenibilidad de los sistemas de producción agrícola y se hace una descripción general de los indicadores de suelo que se han utilizado en evaluaciones de sostenibilidad agrícola. Se han utilizado 28 indicadores, agrupados en indicadores inherentes al suelo (16) e indicadores de procesos relacionados con los sistemas suelo-agua (3), suelo-atmósfera (5) y suelo-planta (4). Se sugiere la medición de al menos un indicador por cada grupo de indicadores asociados a propiedades y procesos del suelo, la inclusión de indicadores que tengan en cuenta escenarios futuros de cambio climático, así como la adaptación de las herramientas actuales para evaluar la sostenibilidad de diversas alternativas de producción.

Monsalve Camacho, O. I., C. R. Bojacá Aldana, y M. C. Henao Toro. «Indicadores De Sostenibilidad agrícola Asociados a Propiedades, Procesos Y Manejo Del Suelo». Ciencia &Amp; Tecnología Agropecuaria, vol. 22, n.º 3, octubre de 2021, p. e1919, doi:10.21930/rcta.vol22_num3_art:1919.
  1. Abbona, E. A., Sarandón, S. J., Marasas, M. E., & Astier, M. (2007). Ecological sustainability evaluation of traditional management in different vineyard systems in Berisso, Argentina. Agriculture, Ecosystems and Environment, 119(3-4), 335-445. https://doi.org/10.1016/j.agee.2006.08.001
  2. Acar, M., Celik, I., & Günal, H. (2018). Effects of long-term tillage systems on aggregate-associated organic carbon in the eastern Mediterranean region of Turkey. Eurasian Journal of Soil Science, 7(1), 51-58. http://doi.org/10.18393/ejss.335329
  3. Aharonov-Nadborny, R., Tsechansky, L., Raviv, M., & Graber, E. R. (2018). Mechanisms governing the leaching of soil metals as a result of disposal of olive mill wastewater on agricultural soils. Science of the Total Environment, 630, 1115-1123. https://doi.org/10.1016/j.scitotenv.2018.02.270
  4. Arizpe, N., Giampietro, M., & Ramos-Martin, J. (2011). Food security and fossil energy dependence: An international comparison of the use of fossil energy in agriculture (1991-2003). Critical Reviews in Plant Sciences, 30(1-2), 45-63. https://doi.org/10.1080/07352689.2011.554352
  5. Astier, M., Speelman, E. N., López-Ridaura, S., Masera, O. R., & Gonzalez-Esquivel, C. E. (2011). Sustainability indicators, alternative strategies and trade-offs in peasant agroecosystems: Analysing 15 case studies from Latin America. International Journal of Agricultural Sustainability, 9(3), 409-422. https://doi.org/10.1080/14735903.2011.583481
  6. Audsley, E., Alber, S., Clift, R., Cowell, S., Crettaz, P., Gaillard, G., Hausheer, J., Jolliett, O., Kleijn, R., Mortensen, B., Pearce, D., Roger, E., Teulon, H., Weidema, B., & Van Zeijts, H. (2003). Harmonisation of environmental life cycle assessment for agriculture: final report, Concerted Action AIR3-CT94-2028. European Commission DG VI -Centre de documentation. https://www.worldcat.org/title/harmonisation-of-environmental-life-cycle-assessment-for-agriculture-final-report-concerted-action-air3-ct94-2028/oclc/500038315
  7. Baggs, E. M. (2011). Soil microbial sources of nitrous oxide: Recent advances in knowledge, emerging challenges and future direction. Current Opinion in Environmental Sustainability, 3(5), 321-327. https://doi.org/10.1016/j.cosust.2011.08.011
  8. Barto, E. K., Alt, F., Oelmann, Y., Wilcke, W., & Rillig, M. C. (2010). Contributions of biotic and abiotic factors to soil aggregation across a land use gradient. Soil Biology and Biochemistry, 42(12), 2316-2324. https://doi.org/10.1016/j.soilbio.2010.09.008
  9. Baush, J. C., Bojórquez, L. T., & Eakin, H. (2014). Agro-environmental sustainability assessment using multicriteria decision analysis and system analysis. Sustainable Science, 9(3), 303-319. https://doi.org/10.1007/s11625-014-0243-y
  10. Bélanger, V., Vanasse, A., Parent, D., Allard, G., & Pellerin, D. (2012). Development of agri-environmental indicators to assess dairy farm sustainability in Quebec, Eastern Canada. Ecological Indicators, 23, 421-430. https://doi.org/10.1016/j.ecolind.2012.04.027
  11. Blanco-Canqui, H., & Lal, R. (2004). Mechanisms of carbon sequestration in soil aggregates. CRC. Critical Reviews in Plant Sciences, 23, 481-504. https://doi.org/10.1080/07352680490886842
  12. Bockstaller, C., Feschet, P., & Angevin, F. (2015). Issues in evaluating sustainability of farming systems with indicators. Oilseeds & Fats Crops and Lipids, 22(1), 102. https://doi.org/10.1051/ocl/2014052
  13. Bockstaller, C., Guichard, L., Keichinger, O., Girardin, P., Galan, M. B., & Gaillard, G. (2009). Comparison of methods to assess the sustainability of agricultural systems. A review. Agronomy for Sustainable Development, 29(1), 223-235. https://doi.org/10.1051/agro:2008058
  14. Bodirsky, B. L., Popp, A., Lotze-Campen, H., Dietrich, J. P., Rolinski, S., Weindl, I., Schmitz, C., Müller, C., Bonsch, M., Humpenöder, F., Biewald, A., & Stevanovic, M. (2014). Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Communications, 5(1), Article 3858. https://doi.org/10.1038/ncomms4858
  15. Boeckx, P., & Van Cleemput, O. (2001). Estimates of N2O and CH4 fluxes from agricultural lands in various regions in Europe. Nutrients Cycling in Agroecosystems, 60, 35-47. https://link.springer.com/article/10.1023/A:1012604032377
  16. Bojacá, C. R., Wyckhuys, K. A. G., & Schrevens, E. (2014). Life cycle assessment of Colombian greenhouse tomato production based on farmer-level survey data. Journal of Cleaner Production, 69, 26-33. https://doi.org/10.1016/j.jclepro.2014.01.078
  17. Bone, J., Head, M., Barraclough, D., Archer, M., Scheib, C., Flight, D., & Voulvoulis, N. (2010). Soil quality assessment under emerging regulatory requirements. Environmental International, 36(6), 609-622. https://doi.org/10.1016/j.envint.2010.04.010
  18. Bouma, J., Montanarella, L., & Evanylo, G. (2019). The challenge for the soil science community to contribute to the implementation of the UN Sustainable Development Goals. Soil Use Management, 35(4), 538-546. https://doi.org/10.1111/sum.12518
  19. Bouwman, A. F., Van Der Hoek, K. W., & Olivier, J. G. J. (1995). Uncertainties in the global source distribution of nitrous oxide. Journal of Geophysical Research, 100(D2), 2785-2800. https://doi.org/10.1029/94JD02946
  20. Brentrup, F., Kusters, J., Lammel, J., & Kuhlmann, H. (2000). Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. International Journal of Life Cycle Assessment, 5(6), 349-357. https://doi.org/10.1006/bbrc.2000.4000
  21. Brunett Pérez, L., González Esquivel, C., & García Hernández, L. A. (2005). Evaluación de la sustentabilidad de dos agroecosistemas campesinos de producción de maíz y leche, utilizando indicadores. Livestock Research for Rural Development, 17(7), Article 78. http://www.lrrd.org/lrrd17/7/pere17078.htm
  22. Camargo, J. A., & Alonso, Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International, 32(6), 831-849. https://doi.org/10.1016/j.envint.2006.05.002
  23. Cellura, M., Longo, S., & Mistretta, M. (2012). Life Cycle Assessment (LCA) of protected crops: An Italian case study. Journal of Cleaner Production, 28, 56-62. https://doi.org/10.1016/j.jclepro.2011.10.021
  24. Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Quéré, C. L., Myneni, R. B., Piao, S., & Thornton, P. (2013). Carbon and other biogeochemical cycles. In Intergovernmental Panel on Climate Change (IPCC), Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change (pp. 465-570). Cambridge University Press. http://www.climatechange2013.org/images/report/WG1AR5_Chapter06_FINAL.pdf
  25. Cordell, D., Drangert, J. O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19(2), 292-305. https://doi.org/10.1016/j.gloenvcha.2008.10.009
  26. De Jager, A., Onduru, D., van Wijk, M. S., Vlaming, J., & Gachini, G. N. (2001). Assessing sustainability of low-external-input farm management systems with the nutrient monitoring approach: a case study in Kenya. Agricultural Systems, 69(1-2), 99-118. https://doi.org/10.1016/S0308-521X(01)00020-8
  27. De Luca, A. I., Falcone, G., Stillitano, T., Iofrida, N., Strano, A., & Gulisano, G. (2018). Evaluation of sustainable innovations in olive growing systems: A life cycle sustainability assessment case study in southern Italy. Journal of Cleaner Production, 171, 1187-1202. https://doi.org/10.1016/j.jclepro.2017.10.119
  28. De Luca, A. I., Iofrida, N., Leskinen, P., Stillitano, T., Falcone, G., Strano, A., & Gulisano, G. (2017). Life cycle tools combined with multi-criteria and participatory methods for agricultural sustainability: Insights from a systematic and critical review. Science of the Total Environment, 595, 352-370. https://doi.org/10.1016/j.scitotenv.2017.03.284
  29. De Olde, E. M., Oudshoorn, F., Bokkers, E., Stubsgaard, A., Sørensen, C., & De Boer, I. (2016). Assessing the sustainability performance of organic farms in Denmark. Sustainability, 8(9), 957. https://doi.org/10.3390/su8090957
  30. De Olde, E. M., Oudshoorn, F., Sørensen, C., Bokkers, E., & De Boer, I. (2016). Assessing sustainability at farm-level: Lessons learned from a comparison of tools in practice. Ecological Indicators, 66, 391-404. https://doi.org/10.1016/j.ecolind.2016.01.047
  31. Dempster, D. N., Jones, D. L., & Murphy, D. V. (2012). Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil. Soil Research, 50(3), 216-221. https://doi.org/10.1071/SR11316
  32. Dizdaroglu, D., & Yigitcanlar, T. (2014). A parcel-scale assessment tool to measure sustainability through urban ecosystem components: The MUSIX model. Ecological Indicators, 41, 115-130. https://doi.org/10.1016/j.ecolind.2014.01.037
  33. Drechsel, P., Heffer, P., Magen, H., Mikkelsen, R., Singh, H., & Wichelns, D. (2015). Managing water and nutrients to ensure global food security, while sustaining ecosystem services. In P. Drechsel, P. Heffer, H. Magen, R. Mikkelsen, & D. Wichelns (Eds.), Managing Water and Fertilizer for Sustainable Agricultural Intensification (1st ed., pp. 1-7). International Fertilizer Industry Association (IFA); International Water Management Institute (IWMI); International Plant Nutrition Institute (IPNI); International Potash Institute (IPI). https://hdl.handle.net/10568/65338
  34. Elkington, J. (1998). Partnerships from cannibals with forks: The triple bottom line of 21st-century business. Environmental Quality Management, 8(1), 37-51. https://doi.org/10.1002/tqem.3310080106
  35. Farahani, E., Emami, H., & Keller, T. (2018). Impact of monovalent cations on soil structure. Part II. Results of two Swiss soils. International Agrophysics, 32(1), 69-80. https://doi.org/10.1515/intag-2016-0092
  36. Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connel, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, … Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478, 337-342. http://doi.org/10.1038/nature10452
  37. Food and Agriculture Organization [FAO]. (2011). The State of the World’s Land and Water Resources for Food and Agriculture. Managing Systems at Risk (1st ed.). Routledge. http://doi.org/10.4324/9780203142837
  38. Food and Agriculture Organization [FAO]. (2016). Handbook on agricultural cost of production statistics. Guidelines for data collection, compilation and dissemination [Publication prepared in the framework of the Global Strategy to improve Agricultural and Rural Statistics]. FAO. http://www.fao.org/3/ca6411en/ca6411en.pdf
  39. Galloway, J. N., Aer, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling, E. B., & Cosby, B. J. (2003). The Nitrogen Cascade. Bioscience, 53, 341. https://doi.org/10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2
  40. Garrigues, E., Corson, M. S., Angers, D. A., Van Der Werf, H. M. G., & Walter, C. (2012). Soil quality in Life Cycle Assessment: Towards development of an indicator. Ecological Indicators, 18, 434-442. https://doi.org/10.1016/j.ecolind.2011.12.014
  41. Gattinger, A., Muller, A., Haeni, M., Skinner, C., Fliessbach, A., Buchmann, N., Mader, P., Stolze, M., Smith, P., Scialabba, N. E. -H., & Niggli, U. (2012). Enhanced top soil carbon stocks under organic farming. Proceedings of the National Academy of Sciences, 109(44), 18226-18231. https://doi.org/10.1073/pnas.1209429109
  42. Gaudino, S., Goia, I., Borreani, G., Tabacco, E., & Sacco, D. (2014). Cropping system intensification grading using an agro-environmental indicator set in northern Italy. Ecological Indicators, 40, 76-89. https://doi.org/10.1016/j.ecolind.2014.01.004
  43. Gerdessen, J. C., & Pascucci, S. (2013). Data envelopment analysis of sustainability indicators of European agricultural systems at regional level. Agricultural Systems, 118, 78-90. https://doi.org/10.1016/j.agsy.2013.03.004
  44. Ghisellini, P., Zucaro, A., Viglia, S., & Ulgiati, S. (2014). Monitoring and evaluating the sustainability of Italian agricultural system. An emergy decomposition analysis. Ecological Modelling, 271, 132-148. https://doi.org/10.1016/j.ecolmodel.2013.02.014
  45. Giles, J. (2005). Nitrogen study fertilizes fears of pollution. Nature, 433(7028), Article 791. https://doi.org/10.1038/433791a
  46. Gómez-Limón, J. A., & Riesgo, L. (2009). Alternative approaches to the construction of a composite indicator of agricultural sustainability: An application to irrigated agriculture in the Duero basin in Spain. Journal of Environmental Management, 90(11), 3345-3362. https://doi.org/10.1016/j.jenvman.2009.05.023
  47. Gómez-Limón, J. A., & Sánchez-Fernández G. (2010). Empirical evaluation of agricultural sustainability using composite indicators. Ecological Economics, 69(5), 1062-1075. https://doi.org/10.1016/j.ecolecon.2009.11.027
  48. Gomiero, T., Pimentel, D., & Paoletti, M. G. (2011). Is There a Need for a More Sustainable Agriculture? CRC. Critical Reviews in Plant Sciences, 30(1-2), 6-23. https://doi.org/10.1080/07352689.2011.553515
  49. Guinée, J. B., Gorree, M., Heijungs, R., Huppes, G., Kleijn, R., De Koning, A., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H. A., De Bruijn, J. A., Van Duin, R., & Huijbregts, M. A. J. (Eds.). (2002). Handbook on life cycle assessment. Operational guide to the ISO Standards. Springer. https://www.springer.com/gp/book/9781402002281
  50. Havlin, J. L., Beaton, J. D., Tisdale, S. L., & Nelson, W. L. (2014). Soil Fertility and Fertilizers: An introduction to nutrient management (8th ed.). Pearson. https://www.pearson.com/us/higher-education/product/Havlin-Soil-Fertility-and-Fertilizers-An-Introduction-to-Nutrient-Management-7th-Edition/9780130278241.html
  51. Hayati, D., Ranjbar, Z., & Karami, E. (2010). Measuring Agricultural Sustainability. In E. Lichtfouse (Ed.), Biodiversity, Biofuels, Agroforestry and Conservation Agriculture (Sustainable Agriculture Reviews, 5, pp. 73-100). Springer. https://doi.org/10.1007/978-90-481-9513-8_2
  52. Heijungs, R., & Guinée, J. B. (2012). An overview of the life cycle assessment method - Past, Present and Future. In M. A. Curran (Ed.), Life cycle assessment handbook. A guide for environmentally sustainable products (pp. 15-42). Willey. https://doi.org/10.1021/es101316v
  53. Hirel, B., Tétu, T., Lea, P. J., & Dubois, F. (2011). Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability, 3(9), 1452-1485. https://doi.org/10.3390/su3091452
  54. Hoang, V. N., & Alauddin, M. (2010). Assessing the eco-environmental performance of agricultural production in OECD countries: The use of nitrogen flows and balance. Nutrient Cycling in Agroecosystems, 87(3), 353-368. https://doi.org/10.1007/s10705-010-9343-y
  55. Hubeau, M., Marchand, F., Coteur, I., Mondelaers, K., Debruyne, L., & Van Huylenbroeck, G. (2017). A new agri-food systems sustainability approach to identify shared transformation pathways towards sustainability. Ecological Economics, 131, 52-63. https://doi.org/10.1016/j.ecolecon.2016.08.019
  56. Intergovernmental Panel on Climate Change [IPCC]. (2013). Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://www.ipcc.ch/report/ar5/wg1/
  57. Ivushkin, K., Bartholomeus, H., Bregt, A. K., Pulatov, A., Bui, E. N., & Wilford, J. (2018). Soil salinity assessment through satellite thermography for different irrigated and rainfed crops. International Journal of Applied Earth Observation and Geoinformation, 68, 230-237. https://doi.org/10.1016/j.jag.2018.02.004
  58. Kanter, D. R., Musumba, M., Wood, S. L. R., Palm, C., Antle, J., Balvanera, P., Dale, V. H., Havlik, P., Kline, K. L., Scholes, R. J., Thornton, P., Tittonell, P., & Andelman, S. (2018). Evaluating agricultural trade-offs in the age of sustainable development. Agricultural Systems, 163, 73-88. https://doi.org/10.1016/j.agsy.2016.09.010
  59. Karaca, S., Gürses, A., Ejder, M., & Açikyildiz, M. (2004). Kinetic modeling of liquid-phase adsorption of phosphate on dolomite. Journal of Colloid and Interface Science, 277(2), 257-263. https://doi.org/10.1016/j.jcis.2004.04.042
  60. Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., Van Der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B., & Fresco, L. O. (2016). The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil, 2(2), 111-128. https://doi.org/10.5194/soil-2-111-2016
  61. Khodaverdiloo, H., Momtaz, H., & Liao, K. (2018). Performance of soil cation exchange capacity pedotransfer function as affected by the inputs and database size. Clean - Soil, Air, Water, 46(3). https://doi.org/10.1002/clen.201700670
  62. Kucukvar, M., Egilmez, G., & Tatari, O. (2014). Sustainability assessment of U.S. final consumption and investments: triple-bottom-line input-output analysis. Journal of Cleaner Production, 81, 234-243. https://doi.org/10.1016/j.jclepro.2014.06.033
  63. Laird, D., Fleming, P., Wang, B., Horton, R., & Karlen, D. (2010). Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158(3-4), 436-442. https://doi.org/10.1016/j.geoderma.2010.05.012
  64. Lal, R. (2015). Restoring soil quality to mitigate soil degradation. Sustainability, 7(5), 5875-5895. https://doi.org/10.3390/su7055875
  65. Lebacq, T., Baret, P. V., & Stilmant, D. (2013). Sustainability indicators for livestock farming. A review. Agronomy for Sustainable Development, 33(2), 311-327. https://doi.org/10.1007/s13593-012-0121-x
  66. Lemtiri, A., Colinet, G., Alabi, T., Bodson, B., Olivier, C., Brostaux, Y., Pierreux, J., Haubruge, E., Cluzeau, D., & Francis, F. (2018). Short-term effects of tillage practices and crop residue exportation on soil organic matter and earthworm communities in silt loam arable soil. In M. Á. Muñoz & R. Zornoza (Eds.), Soil Management and Climate Change: Effects on Organic Carbon, Nitrogen Dynamics, and Greenhouse Gas Emissions (pp. 53-71). Elsevier. https://doi.org/10.1016/B978-0-12-812128-3.00005-7
  67. Li, L., Du, S., Wu, L., & Liu, G. (2009). An overview of soil loss tolerance. Catena, 78(2), 93-99. https://doi.org/10.1016/j.catena.2009.03.007
  68. Loaiza, P. V, Pujol, P. E. I., Wittwer, R., van der Heijden, M., & Six, J. (2018). Improvement of soil structure through organic crop management, conservation tillage and grass-clover ley. Soil Tillage Research, 180, 1-9. https://doi.org/10.1016/j.still.2018.02.007
  69. Lori, M., Symnaczik, S., Mäder, P., De Deyn, G., & Gattinger, A. (2017). Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-Regression. PLoS One, 12(7), 1-25. https://doi.org/10.1371/journal.pone.0180442
  70. Marchand, F., Debruyne, L., Triste, L., Gerrard, C., Padel, S., & Lauwers, L. (2014). Key characteristics for tool choice in indicator-based sustainability assessment at farm level. Ecology and Society, 19(3), 46-56. https://doi.org/10.5751/ES-06876-190346
  71. Martínez-Blanco, J., Lehmann, A., Muñoz, P., Antón, A., Traverso, M., Rieradevall, J., & Finkbeiner, M. (2014). Application challenges for the social Life Cycle Assessment of fertilizers within life cycle sustainability assessment. Journal of Cleaner Production, 69, 34-48. https://doi.org/10.1016/j.jclepro.2014.01.044
  72. Mascarenhas, A., Coelho, P., Subtil, E., & Ramos, T. B. (2010). The role of common local indicators in regional sustainability assessment. Ecological Indicators, 10(3), 646-656. https://doi.org/10.1016/j.ecolind.2009.11.003
  73. Meul, M., Passel, S., Nevens, F., Dessein, J., Rogge, E., Mulier, A., & Hauwermeiren, A. (2008). MOTIFS: a monitoring tool for integrated farm sustainability. Agronomy for Sustainable Development, 28(2), 321-332. https://doi.org/10.1051/agro:2008001
  74. Milder, J. C., Arbuthnot, M., Blackman, A., Brooks, S. E., Giovannucci, D., Gross, L., Kennedy, E. T., Komives, K., Lambin, E. F., Lee, A., Meyer, D., Newton, P., Phalan, B., Schroth, G., Semroc, B., Van Rikxoort, H., & Zrust, M. (2014). An agenda for assessing and improving conservation impacts of sustainability standards in tropical agriculture. Conservation Biology, 29(2), 309-320. https://doi.org/10.1111/cobi.12411
  75. Mtengeti, E. J., Brentrup, F., Mtengeti, E., Olav, E. L., & Chambuya, R. (2015). Sustainable intensification of maize and rice in smallholder farming systems under climate change in Tanzania. In D.L. Mwaseba, D. Kraybill, D.O. Hansen, & L. Olav (Eds.), Sustainable Intensification to Advance Food Security and Enhance Climate Resilience in Africa (1st ed., pp. 441-465). Springer. https://link.springer.com/chapter/10.1007/978-3-319-09360-4_24
  76. Nambiar, K. K. M., Gupta, A. P., Fu, Q., & Li, S. (2001). Biophysical, chemical and socio-economic indicators for assessing agricultural sustainability in the Chinese coastal zone. Agriculture, Ecosystems and Environment, 87(2), 209-214. https://doi.org/10.1016/S0167-8809(01)00279-1
  77. Neugebauer, S., Martinez-Blanco, J., & Finkbeiner, M. (2015). Enhancing the practical implementation of life cycle sustainability assessment - proposal of a Tiered approach. Journal of Cleaner Production, 102, 165-176. https://doi.org/10.1016/j.jclepro.2015.04.053
  78. Nieder, R., & Benbi, D. K. (2008). Carbon and Nitrogen in the Terrestrial Environment. Springer. https://doi.org/10.1007/978-1-4020-8433-1
  79. Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., & Erasmi, S. (2016). Greenhouse gas emissions from soils–A review. Geochemistry, 76(3), 327-352. https://doi.org/10.1016/j.chemer.2016.04.002
  80. Okalebo, J. R., Gathua, K. W., & Woomer, P. L. (1993). Laboratory methods of soil and plant analysis: a working manual. Tropical Soil Biology and Fertility Programme. https://www.worldcat.org/title/laboratory-methods-of-soil-and-plant-analysis-a-working-manual/oclc/51374874
  81. Oldeman, L. (1994). The global extent of soil degradation. Soil Resilience and Sustainable Land Use, 19-36. https://doi.org/10.1016/j.apsoil.2013.10.002
  82. Pacini, C., Wossink, A., Giesen, G., Vazzana, C., & Huirne, R. (2003). Evaluation of sustainability of organic, integrated and conventional farm systems: a farm and field scale analysis. Agriculture, Ecosystems and Environment, 95(1), 273-288. https://doi.org/10.1016/S0167-8809(02)00091-9
  83. Paracchini, M. L., Bulgheroni, C., Borreani, G., Tabacco, E., Banterle, A., Bertoni, D., Rossi, G., Parolo, G., Origgi, R., & De Paola, C. (2015). A diagnostic system to assess sustainability at a farm level: The SOSTARE model. Agricultural Systems, 133, 35-53. https://doi.org/10.1016/j.agsy.2014.10.004
  84. Peano, C., Migliorini, P., & Sottile, F. (2014). A methodology for the sustainability assessment of agri-food systems: An application to the slow food presidia project. Ecology and Society, 19(4), 24. https://doi.org/10.5751/ES-06972-190424
  85. Pergola, M., D’Amico, M., Celano, G., Palese, A. M., Scuderi, A., Di Vita, G., Pappalardo, G., & Inglese, P. (2013). Sustainability evaluation of Sicily’s lemon and orange production: An energy, economic and environmental analysis. Journal of Environmental Management, 128, 674-682. https://doi.org/10.1016/j.jenvman.2013.06.007
  86. Pollesch, N., & Dale, V. H. (2015). Applications of aggregation theory to sustainability assessment. Ecological Economics, 114, 117-127. https://doi.org/10.1016/j.ecolecon.2015.03.011
  87. Praneetvatakul, S., Janekarnkij, P., Potchanasin, C., & Prayoonwong, K. (2001). Assessing the sustainability of agriculture: A case of Mae Chaem Catchment, northern Thailand. Environment International, 27, 103-109. https://doi.org/10.1016/S0160-4120(01)00068-X
  88. Rawashdeh, R. A., & Maxwell, P. (2014). Analysing the world potash industry. Resources Policy, 41, 143-151. https://doi.org/10.1016/j.resourpol.2014.05.004
  89. Rawashdeh, R. A., Xavier-Oliveira, E., & Maxwell, P. (2016). The potash market and its future prospects. Resources Policy, 47, 154-163. https://doi.org/10.1016/j.resourpol.2016.01.011
  90. Repar, N., Jan, P., Dux, D., Nemecek, T., & Doluschitz, R. (2017). Implementing farm-level environmental sustainability in environmental performance indicators: A combined global-local approach. Journal of Cleaner Production, 140(Part 2), 692-704. https://doi.org/10.1016/j.jclepro.2016.07.022
  91. Rinne, J., Lyytimäki, J., & Kautto, P. (2013). From sustainability to well-being: Lessons learned from the use of sustainable development indicators at national and EU level. Ecological Indicators, 35, 35-42. https://doi.org/10.1016/j.ecolind.2012.09.023
  92. Rockström, J., Williams, J., Daily, G., Noble, A., Matthews, N., Gordon, L., Wetterstrand, H., DeClerck, F., Shah, M., Steduto, P., de Fraiture, C., Hatibu, N., Unver, O., Bird, J., Sibanda, L., & Smith, J. (2017). Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio, 46(1), 4-17. https://doi.org/10.1007/s13280-016-0793-6
  93. Rodrigues, G. S., Rodrigues, I. A., Buschinelli, C. C. de A., & de Barros, I. (2010). Integrated farm sustainability assessment for the environmental management of rural activities. Environmental Impact Assessment Review, 30(4), 229-239. https://doi.org/10.1016/j.eiar.2009.10.002
  94. Römheld, V., & Kirkby, E. A. (2010). Research on potassium in agriculture: Needs and prospects. Plant and Soil, 335(1-2), 155-180. https://doi.org/10.1007/s11104-010-0520-1
  95. Roy, R., & Chan, N. W. (2012). An assessment of agricultural sustainability indicators in Bangladesh: Review and synthesis. Environmentalist, 32(1), 99-110. https://doi.org/10.1007/s10669-011-9364-3
  96. Ryan, M., Hennessy, T., Buckley, C., Dillon, E. J., Donnellan, T., Hanrahan, K., & Moran, B. (2016). Developing farm-level sustainability indicators for Ireland using the Teagasc National Farm Survey. Irish Journal of Agricultural and Food Research, 55(2), 112-125. https://doi.org/10.1515/ijafr-2016-0011
  97. Sadok, W., Angevin, F., Bergez, J. E., Bockstaller, C., Colomb, B., Guichard, L., Reau, R., Messéan, A., & Doré, T. (2009). MASC, a qualitative multi-attribute decision model for ex ante assessment of the sustainability of cropping systems. Agronomy for Sustainable Development, 29(3), 447-461. https://doi.org/10.1051/agro/2009006
  98. Sarkar, D., & Haldar, A. (2005). Physical and chemical methods in soil analysis. Fundamental concepts of analytical chemistry and instrumental techniques. New Age International Publishers. https://www.worldcat.org/title/physical-and-chemical-methods-in-soil-analysis-fundamental-concepts-of-analytical-chemistry-and-instrumental-techniques/oclc/369173262
  99. Schader, C., Baumgart, L., Landert, J., Muller, A., Ssebunya, B., Blockeel, J., Weisshaidinger, R., Petrasek, R., Mészáros, D., Padel, S., Gerrard, C., Smith, L., Lindenthal, T., Niggli, U., & Stolze, M. (2016). Using the Sustainability Monitoring and Assessment Routine (SMART) for the systematic analysis of trade-offs and synergies between sustainability dimensions and themes at farm level. Sustainability, 8(3), 1-20. https://doi.org/10.3390/su8030274
  100. Schader, C., Grenz, J., Meier, M. S., & Stolze, M. (2014). Scope and precision of sustainability assessment approaches to food systems. Ecology and Society, 19(3), 42-57. https://doi.org/10.5751/ES-06866-190342
  101. Schaufler, G., Kitzler, B., Schindlbacher, A., Skiba, U., Sutton, M. A., & Zechmeister-Boltenstern, S. (2010). Greenhouse gas emissions from European soils under different land use: Effects of soil moisture and temperature. European Journal of Soil Science, 61(5), 683-696. https://doi.org/10.1111/j.1365-2389.2010.01277.x
  102. Blume, H. P., Brümmer, G. W., Horn, R., Kandeler, E., Kögel-Knabner, I., Kretzschmar, R., Schad, P., Stahr, K., Wilke, B. -M. (2016). Scheffer/Schachtschabel Soil Science (1st ed.). Springer. http://doi.org/10.1007/978-3-642-30942-7
  103. Schindler, J., Graef, F., & König, H. J. (2015). Methods to assess farming sustainability in developing countries. A review. Agronomy for Sustainable Development, 35(3), 1-15. https://doi.org/10.1007/s13593-015-0305-2
  104. Shayler, H., McBride, M., & Harrison, E. (2009). Sources and impacts of contaminants in soils [Fact sheet]. Cornell Waste Management Institute. https://hdl.handle.net/1813/14282
  105. Smith, A., Snapp, S., Chikowo, R., Thorne, P., Bekunda, M., & Glover, J. (2017). Measuring sustainable intensification in smallholder agroecosystems: A review. Global Food Security, 12, 127-138, http://doi.org/10.1016/j.gfs.2016.11.002
  106. Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., & Smith, J. (2008). Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 789-813. https://doi.org/10.1098/rstb.2007.2184
  107. Soussana, J. F. (2014). Research priorities for sustainable agri-food systems and life cycle assessment. Journal of Cleaner Production, 73, 19-23. https://doi.org/10.1016/j.jclepro.2014.02.061
  108. Spiertz, J. H. J. (2010). Nitrogen, sustainable agriculture and food security. A review. Agronomy for Sustainable Development, 30, 43-55. https://doi.org/10.1051/agro:2008064
  109. Stavi, I., & Lal, R. (2013). Agriculture and greenhouse gases, a common tragedy. A review. Agronomy for Sustainable Development, 33(2), 275-289. https://doi.org/10.1007/s13593-012-0110-0
  110. Therond, O., Duru, M., Roger-Estrade, J., & Richard, G. (2017). A new analytical framework of farming system and agriculture model diversities. A review. Agronomy for Sustainable Development, 37(3), 21. https://doi.org/10.1007/s13593-017-0429-7
  111. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671-677. https://doi.org/10.1038/nature01014
  112. Tittonell, P. (2014). Ecological intensification of agriculture-sustainable by nature. Current Opinion in Environmental Sustainability, 8, 53-61. https://doi.org/10.1016/j.cosust.2014.08.006
  113. Torrellas, M., Antón, A., & Montero, J. I. (2013). An environmental calculator for greenhouse production systems. Journal of Environmental Management, 118, 186-195, https://doi.org/10.1016/j.jenvman.2013.01.011
  114. Tóth, G., Hermann, T., da Silva, M. R., & Montanarella, L. (2018). Monitoring soil for sustainable development and land degradation neutrality. Environmental Monitoring and Assessment, 190(2), Article 57. https://doi.org/10.1007/s10661-017-6415-3
  115. Tricase, C., Lamonaca, E., Ingrao, C., Bacenetti, J., & Lo Giudice, A. (2018). A comparative life cycle assessment between organic and conventional barley cultivation for sustainable agriculture pathways. Journal of Cleaner Production, 172, 3747-3759. https://doi.org/10.1016/j.jclepro.2017.07.008
  116. Triste, L., Marchand, F., Debruyne, L., Meul, M., & Lauwers, L. (2014). Reflection on the development process of a sustainability assessment tool: learning from a Flemish case. Ecology and Society, 19(3), 47-57. https://doi.org/10.5751/ES-06789-190347
  117. Ulén, B., Larsbo, M., Koestel, J., Hellner, Q., Blomberg, M., & Geranmayeh, P. (2018). Assessing strategies to mitigate phosphorus leaching from drained clay soils. Ambio, 47(S1), 114-123. https://doi.org/10.1007/s13280-017-0991-x
  118. Umar A. S., & Iqbal, M. (2007). Nitrate accumulation in plants, factors affecting the process and human health implications. A review. Agronomy for Sustainable Development, 27(1), 45-57, http://doi.org/10.1051/agro:2006021
  119. Usman, M., Ibrahim, F., & Oyetola, S. O. (2018). Sustainable agriculture in relation to problems of soil degradation and how to amend such soils for optimum crop production in Nigeria. International Journal for Research in Agricultural and Food Science, 4, 1-17. http://gnpublication.com/index.php/afs/article/view/471
  120. Van Asselt, E. D., Van Bussel, L. G. J., Van der Voet, H., Van der Heijden, G. W. A. M., Tromp, S. O., Rijgersberg, H., Van Evert, F., & Van Wagenberg, C. P. A. (2014). A protocol for evaluating the sustainability of agri-food production systems–A case study on potato production in peri-urban agriculture in The Netherlands. Ecological Indicators, 43, 315-321. https://doi.org/10.1016/j.ecolind.2014.02.027
  121. Van Capelle, C., Schrader, S., & Brunotte, J. (2012). Tillage-induced changes in the functional diversity of soil biota – A review with a focus on German data. European Journal of Soil Biology, 50, 165-181. https://doi.org/10.1016/j.ejsobi.2012.02.005
  122. Van Passel, S., & Meul, M. (2012). Multilevel and multi-user sustainability assessment of farming systems. Environmental Impact Assessment Review, 32(1), 170-180. https://doi.org/10.1016/j.eiar.2011.08.005
  123. Verheijen, F. G. A., Jones, R. J. A., Rickson, R. J., & Smith, C. J. (2009). Tolerable versus actual soil erosion rates in Europe. Earth-Science Reviews, 94(1-4), 23-38. https://doi.org/10.1016/j.earscirev.2009.02.003
  124. Verhulst, N., François, I., & Govaerts, B. (2010). Conservation agriculture, improving soil quality for sustainable production systems? In L. Rattan, & B.A. Stewart (Eds.), Advances in Soil Science: Food Security and Soil Quality (pp.137-208). Taylor & Francis Group. http://repository.cimmyt.org/xmlui/bitstream/handle/10883/4732/97756.pdf?sequence=1
  125. Walkley, A., & Black, I. A. (1934). An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38. https://doi.org/10.1097/00010694-193401000-00003
  126. Walraevens, K., Tewolde, T. G., Amare, K., Hussein, A., Berhane, G., Baert, R., Ronsse, S., Kebede, S., Van Hulle, L., Deckers, J., Martens, K., & Van Camp, M. (2015). Water balance components for sustainability assessment of groundwater-dependent agriculture: example of the Mendae plain (Tigray, Ethiopia). Land Degradation and Development, 26(7), 725-736. https://doi.org/10.1002/ldr.2377
  127. Wang, Y., Fan, J., Cao, L., Zheng, X., Ren, P., & Zhao, S. (2018). The influence of tillage practices on soil detachment in the red soil region of China. Catena, 165, 272-278. https://doi.org/10.1016/j.catena.2018.02.011
  128. Weidema, B. P., & Meeusen, M. J. G. (Eds.). (2000). Agricultural data for life Cycle Assessments (Vol. 1). Agricultural Economics Research Institute (LEI). https://www.researchgate.net/publication/268044707_IV_Agricultural_data_for_Life_Cycle_Assessments
  129. Weldeslassie, T., Naz, H., Singh, S., & Oves, M. (2018). Chemical contaminants for soil, air, and aquatic ecosystem. In M. Oves, M.Z. Khan, & I.M.I. Ismail (Eds.), Modern age environmental problems and their remediation (1st ed.). Springer. http://doi.org/10.1007/978-3-319-64501-8
  130. West, T. O., & Marland, G. (2002). A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agriculture, Ecosystems & Environment, 91(1-3), 217-232. https://doi.org/10.1016/S0167-8809(01)00233-X
  131. Yao, Y., Gao, B., Zhang, M., Inyang, M., & Zimmerman, A. R. (2012). Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 89(11), 1467-1471. https://doi.org/10.1016/j.chemosphere.2012.06.002
  132. Zörb, C., Senbayram, M., & Peiter, E. (2014). Potassium in agriculture - Status and perspectives. Journal of Plant Physiology, 171(9), 656-669. https://doi.org/10.1016/j.jplph.2013.08.008

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

322 | 173




 

Creative Commons License

La Revista proporciona acceso abierto y libre a todos sus contenidos; sin barreras legales, económicas o tecnológicas, para lo cual define la siguiente licencia de publicación y uso de los artículos: Licencia de publicación: Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) Texto completo:https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es