Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio
Publicado: 2021-01-10

Aspectos tecnológicos de la microencapsulación de compuestos bioactivos en alimentos mediante secado por aspersión

Universidad de Caldas
Universidad de Caldas
Universidad de Caldas
biocompuestos encapsulación estabilidad secado tecnología de alimentos

Resumen

El secado por aspersión es una técnica de amplio uso en la industria de alimentos para la obtención de productos en polvo a partir de la formación de gotas pequeñas dentro de una cámara de secado a temperatura elevada. Esta técnica de secado se ha aplicado a la formación de microcápsulas que albergan compuestos funcionales con el objetivo de suplementar un alimento mediante la adición de uno o varios ingredientes esenciales que pueden proporcionar beneficios para la salud humana. En esta revisión, se recopiló información sobre el proceso de microencapsulación de secado por aspersión: el principio y las condiciones de operación, los materiales pared utilizados, su influencia sobre las propiedades fisicoquímicas y funcionales de las microcápsulas obtenidas, los problemas de calidad en las microcápsulas, los aspectos de liberación de los compuestos bioactivos y los estudios relacionados con la microencapsulación de vitaminas, minerales, sustancias oleosas, antioxidantes y microorganismos probióticos. En total, se consultaron 78 estudios publicados entre los años 2010 y 2020 en bases de datos de alto impacto en la comunidad científica. Se observó que algunas combinaciones de compuestos bioactivos, con propiedades fisicoquímicas y funcionales definidas, dan origen a nuevos alimentos funcionales que mejoran en alto grado la salud de quienes los consumen con frecuencia. Los adelantos en el área de la microencapsulación mediante secado por aspersión son numerosos y coinciden con las nuevas tendencias de desarrollo e innovación en el ámbito alimentario.

Cardona Tangarife, D. P., L. P. Patiño Arias, y A. M. Ormaza Zapata. «Aspectos tecnológicos De La microencapsulación De Compuestos Bioactivos En Alimentos Mediante Secado Por aspersión». Ciencia &Amp; Tecnología Agropecuaria, vol. 22, n.º 1, enero de 2021, pp. 1-21, doi:10.21930/rcta.vol22_num1_art:1899.
  1. Arslan, S., Erbas, M., Tontul, I., & Topuz, A. (2015). Microencapsulation of probiotic Saccharomyces cerevisiae var. boulardii with different wall materials by spray-drying. LWT - Food Science and Technology, 63(1), 685-690. https://doi.org/10.1016/j.lwt.2015.03.034
  2. Badui, S. (2013). Química de los alimentos (5th ed.). Pearson Educación.
  3. Banožić, M., Babić, J., & Jokić, S. (2020). Recent advances in extraction of bioactive compounds from tobacco industrial waste-a review. Industrial Crops and Products, 144, 112009. https://doi.org/10.1016/j.indcrop.2019.112009
  4. Caliskan, G., & Dirim S. (2016). The effect of different drying processes and the amounts of maltodextrin addition on the powder properties of sumac extract powders. Powder Technology, 287, 308-314. https://doi.org/10.1016/j.powtec.2015.10.019
  5. Campelo, P., Sanches, E., De Barros Fernandes, R., Botrel, D., & Borges, S. (2018). Stability of lime essential oil microparticles produced with protein-carbohydrate blends. Food Research International, 105, 936-944. https://doi.org/10.1016/j.foodres.2017.12.034
  6. Cano-Chauca, M., Stringheta, P., Barbosa, S., Fonseca, K., & Silva, F. (2011). Influence of microstructure on the hygroscopic behaviour of mango powdered obtained by spray-drying. African Journal of Food Science, 5, 148-155.
  7. Caparino, O., Tang, J., Nindo, C., Sablani, S., Powers, J., & Fellman, J. (2012). Effect of drying methods on the physical properties and microstructures of mango (Philippine “Carabao” var.) powder. Journal of Food Engineering, 111(1), 135-148. https://doi.org/10.1016/j.jfoodeng.2012.01.010
  8. Carlan, I., Estevinho, B., & Rocha, F. (2017). Study of microencapsulation and controlled release of modified chitosan microparticles containing vitamin B12. Powder Technology, 318, 162-169. https://doi.org/10.1016/j.powtec.2017.05.041
  9. Carneiro, H., Tonon, R., Grosso, C., & Hubinger, M. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray-drying using different combinations of wall materials. Journal of Food Engineering, 115(4), 443-451. https://doi.org/10.1016/j.jfoodeng.2012.03.033
  10. Cassanego, E., Da Silva, T., Goulart, J., De Oliveira, G., & Sant’Anna, E. (2015). Lactobacillus paracasei isolated from grape sourdough: acid, bile, salt, and heat tolerance after spray-drying with skim milk and cheese whey. European Food Research and Technology, 240, 977-984. https://doi.org/10.1007/s00217-014-2402-x
  11. Chong, P., Yusof, Y., Aziz, M., Nazli, N., Chin, N., & Muhammad, S. (2014). Effects of spray-drying conditions of microencapsulation of Amaranthus gangeticus extract on drying behaviour. Agriculture and Agricultural Science Procedia, 2, 33-42. https://doi.org/10.1016/j.aaspro.2014.11.006
  12. Contreras-Rodríguez, O., Mata, F., Verdejo-Román, J., Ramírez-Bernabé, R., Moreno, D., Vilar-López, R., Soriano-Mas, C., & Verdejo-García, A. (2020). Neural-based valuation of functional foods among lean and obese individuals. Nutrition Research, 78, 27-35. https://doi.org/10.1016/j.nutres.2020.03.006
  13. Cortés-Rojas, D., Fernandes, C., & Oliveira, W. (2015). Optimization of spray-drying conditions for production of Bidens pilosa L. dried extract. Chemical Engineering Research and Design, 93, 366-376. https://doi.org/10.1016/j.cherd.2014.06.010
  14. Costa, S., Souza, B., Martin, A., Bagnara, F., Ragadalli, S., & Costa, A. (2015). Drying by spray-drying in the food industry: micro-encapsulation, process parameters and main carriers used. African Journal of Food Science, 9(9), 462-470. https://doi.org/10.5897/AJFS2015.1279
  15. Da Silva, F., Rodrigues, C., De Alencar, S., Thomazini, M., De Carvalho, J., Pittia, P., & Favaro-Trindade, C. (2013). Assessment of production efficiency, physicochemical properties and storage stability of spray-dried propolis, a natural food additive, using gum Arabic and OSA starch-based carrier systems. Food and Bioproducts Processing, 91(1), 28-36. https://doi.org/10.1016/j.fbp.2012.08.006
  16. Daza, L., Fujita, A., Fávaro-Trinda, C., Rodrigues-Ract, J., Granato, D., & Genovese, M. (2016). Effect of spray-drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC.) fruit extracts. Food and Bioproducts Processing, 97, 20-29. https://doi.org/10.1016/j.fbp.2015.10.001
  17. De Araújo-Uribe, N., Ruiz-Villadiego, O., Montoya-Campuzano, O., & Gutiérrez-Ramírez, L. (2018). Viability of probiotic bacteria Bacillus polymyxa, Bacillus megaterium and Lactobacillus delbruekii subsp. bulgaricus microencapsulated under the spray-drying technique. DYNA, 85(204), 272-276. https://doi.org/10.15446/dyna.v85n204.61644
  18. De Souza, V., Thomazini, M., De Carvalho, J., Fávaro-Trindade, C. (2015). Effect of spray-drying on the physicochemical properties and color stability of the powdered pigment obtained from vinification byproducts of the Bordo grape (Vitis labrusca). Food and Bioproducts Processing, 93, 39-50. https://doi.org/10.1016/j.fbp.2013.11.001
  19. Dhakal, S., & He, J. (2020). Microencapsulation of vitamins in food applications to prevent losses in processing and storage: a review. Food Research International, 137, 109326. https://doi.org/10.1016/j.foodres.2020.109326
  20. Edris, A., Kalemba, D., Adamiec, J., & Piątkowski, M. (2016). Microencapsulation of Nigella sativa oleoresin by spray-drying for food and nutraceutical applications. Food Chemistry, 204, 326-333. https://doi.org/10.1016/j.foodchem.2016.02.143
  21. Estevinho, B., Carlan, I., Blaga, A., & Rocha, F. (2016). Soluble vitamins (vitamin B12 and vitamin C) microencapsulated with different biopolymers by a spray-drying process. Powder Technology, 289, 71-78. https://doi.org/10.1016/j.powtec.2015.11.019
  22. Fang, Z., & Bhandari, B. (2011). Effect of spray-drying and storage on the stability of bayberry polyphenols. Food Chemistry, 129(3), 1139-1147. https://doi.org/10.1016/j.foodchem.2011.05.093
  23. Favaro-Trindade, C., Patel, B., Silva, M., Comunian, T., Federici, E., Jones, O., & Campanella, O. (2020). Microencapsulation as a tool to producing an extruded functional food. LWT, 128, 109433. https://doi.org/10.1016/j.lwt.2020.109433
  24. Fernandes, R., Borges, S., Silva, E., Da Silva, Y., De Souza, H., Do Carmo, E., De Oliveira, C., Yoshida, M., & Botrel, D. (2016). Study of ultrasound-assisted emulsions on microencapsulation of ginger essential oil by spray-drying. Industrial Crops and Products, 94, 413-423. https://doi.org/10.1016/j.indcrop.2016.09.010
  25. Gil, M., Alzate, L., Sánchez-Camargo, A., & Millán, L. (2011). Secado por aspersión: una alternativa para la conservación de los compuestos bioactivos y aromáticos del extracto de ajo (Allium sativum L.). Revista Lasallista de Investigación, 8(2), 40-52. http://repository.lasallista.edu.co:8080/ojs/index.php/rldi/article/view/25/14
  26. Gómez-Aldapa, C., Castro-Rosas, J., Rangel-Vargas, E., Navarro-Cortez, R., Cabrera-Canales, Z., Díaz-Batalla, L., Martínez-Bustos, F., Guzmán-Ortiz, F., & Falfan-Cortes, R. (2019). A modified Achira (Canna indica L.) starch as a wall material for the encapsulation of Hibiscus sabdariffa extract using spray-drying. Food Research International, 119, 547-553. https://doi.org/10.1016/j.foodres.2018.10.031
  27. Goula, A., & Adamopoulos, K. (2010). A new technique for spray-drying orange juice concentrate. Innovative Food Science & Emerging Technologies, 11(2), 342-351. https://doi.org/10.1016/j.ifset.2009.12.001
  28. Haider, C., Niederreiter, G., Palzer, S., Hounslow, M., & Salman, A. (2018). Unwanted agglomeration of industrial amorphous food powder from a particle perspective. Chemical Engineering Research and Design, 132, 1160-1169. https://doi.org/10.1016/j.cherd.2018.02.023
  29. Hashib, S., Rahman, N., Suzihaque, M., Ibrahim, U., & Hanif, N. (2015). Effect of slurry concentration and inlet temperature towards glass temperature of spray dried pineapple powder. Procedia - Social and Behavioral Sciences, 195, 2660-2667. https://doi.org/10.1016/j.sbspro.2015.06.472
  30. Hategekimana, J., Masamba, K., Ma, J., & Zhong, F. (2015). Encapsulation of vitamin E: effect of physicochemical properties of wall material on retention and stability. Carbohydrate Polymers, 124, 172-179. https://doi.org/10.1016/j.carbpol.2015.01.060
  31. Hernández, M., Cuvelier, M.-E., & Turchiuli, C. (2015). Design of liquid emulsions to structure spray dried particles. Journal of Food Engineering, 167, Part B, 99-105. https://doi.org/10.1016/j.jfoodeng.2015.07.036
  32. Huang, S., Méjean, S., Rabah, H., Dolivet, A., Le Loir, Y., Chen, X., Jan, G., Jeantet, R., & Schuck, P. (2017). Double use of concentrated sweet whey for growth and spray-drying of probiotics: towards maximal viability in pilot scale spray dryer. Journal of Food Engineering, 196, 11-17. https://doi.org/10.1016/j.jfoodeng.2016.10.017
  33. Islam, M., Kitamura, Y., Yamano, Y., & Kitamura, M. (2016). Effect of vacuum spray-drying on the physicochemical properties, water sorption and glass transition phenomenon of orange juice powder. Journal of Food Engineering, 169, 131-140. https://doi.org/10.1016/j.jfoodeng.2015.08.024
  34. Lisboa, H., Duarte, M., & Cavalcanti-Mata, M. (2018). Modeling of food drying processes in industrial spray dryers. Food and Bioproducts Processing, 107, 49-60. https://doi.org/10.1016/j.fbp.2017.09.006
  35. Liu, W., Chen, X., Cheng, Z., & Selomulya, C. (2016). On enhancing the solubility of curcumin by microencapsulation in whey protein isolate via spray-drying. Journal of Food Engineering, 169, 189-195. https://doi.org/10.1016/j.jfoodeng.2015.08.034
  36. Lopera, S. C., & Gallardo, C. C. (2010). Estudio de la fotodegradación de ácido fólico encapsulado en microesferas de goma arábiga y maltodextrina. Revista Cubana de Farmacia, 44(4), 443-455.
  37. Lucas, J., Ralaivao, M., Estevinho, B., & Rocha, F. (2020). A new approach for the microencapsulation of curcumin by a spray-drying method, in order to value food products. Powder Technology, 362, 428-435. https://doi.org/10.1016/j.powtec.2019.11.095
  38. Luna-Guevara, J., Ochoa-Velasco, C., Hernández-Carranza, P., & Guerrero-Beltrán, J. (2017). Microencapsulation of walnut, peanut and pecan oils by spray-drying. Food Structure, 12, 26-32. https://doi.org/10.1016/j.foostr.2017.04.001
  39. Martín, M., Lara-Villoslada, F., Ruiz, M., & Morales, M. (2015). Microencapsulation of bacteria: a review of different technologies and their impact on the probiotic effects. Innovative Food Science & Emerging Technologies, 27, 15-25. https://doi.org/10.1016/j.ifset.2014.09.010
  40. Martínez, M., Curti, M., Roccia, P., Llabot, J., Penci, M., Bodoira, R., & Ribotta, P. (2015). Oxidative stability of walnut (Juglans regia L.) and chia (Salvia hispanica L.) oils microencapsulated by spray-drying. Powder Technology, 270, Part A, 271-277. https://doi.org/10.1016/j.powtec.2014.10.031
  41. Medina-Torres, L., García-Cruz, E., Calderas, F., González, R., Sánchez-Olivares, G., Gallegos-Infante, J., Rocha-Guzmán, N., & Rodríguez-Ramírez, J. (2013). Microencapsulation by spray-drying of gallic acid with nopal mucilage (Opuntia ficus indica). LWT - Food Science and Technology, 50(2), 642-650. https://doi.org/10.1016/j.lwt.2012.07.038
  42. Medina-Torres, L., Núñez-Ramírez, D., Calderas, F., González-Laredo, R., Minjares-Fuentes, R., Valadez-García, M., Bernad-Bernad, M., & Manero, O. (2019). Microencapsulation of gallic acid by spray-drying with aloe vera mucilage (Aloe barbadensis Miller) as wall material. Industrial Crops and Products, 138, 111461. https://doi.org/10.1016/j.indcrop.2019.06.024
  43. Mohammadian, M., Waly, M., Moghadam, M., Emam-Djomeh, Z., Salami, M., & Moosavi-Movahedi, A. (2020). Nanostructured food proteins as efficient systems for the encapsulation of bioactive compounds. Food Science and Human Wellness. https://doi.org/10.1016/j.fshw.2020.04.009
  44. Morales-Guzmán, J, Medina-Torres, M. G., Andrade-Esquivel, E., Guzmán-Maldonado S. H., & Hernández-López, D. (2010). Evaluación de los efectos del secado por aspersión sobre los compuestos fitoquímicos-funcionales y características fisicoquímicas en encapsulados de zarzamora (Rubus spp). XII Congreso Nacional de Ciencia y Tecnología de los Alimentos (Universidad de Guanajuato, Universidad Autónoma de Nuevo León), Guanajuato, México. https://bit.ly/3gEBCQA
  45. Morales-Medina, R., Tamm, F., Guadix, A., Guadix, E., & Drusch, S. (2016). Functional and antioxidant properties of hydrolysates of sardine (S. pilchardus) and horse mackerel (T. mediterraneus) for the microencapsulation of fish oil by spray-drying. Food Chemistry, 194, 1208-1216. https://doi.org/10.1016/j.foodchem.2015.08.122
  46. Mujumdar, A. (Ed.). (2014). Handbook of industrial drying (4th ed.). CRC Press.
  47. Murugesan, R., & Orsat, V. (2011). Spray-drying for the production of nutraceutical ingredients. A review. Food and Bioprocess Technology, 5(1), 3-14. https://doi.org/10.1007/s11947-011-0638-z
  48. Oberoi, D., & Sogi, D. (2015). Effect of drying methods and maltodextrin concentration on pigment content of watermelon juice powder. Journal of Food Engineering, 165, 172-178. https://doi.org/10.1016/j.jfoodeng.2015.06.024
  49. Ozkan, G., Franco, P., De Marco, I., Xiao, J., & Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: principles, advantages, drawbacks and applications. Food Chemistry, 272, 494-506. https://doi.org/10.1016/j.foodchem.2018.07.205
  50. Parra, R. (2010). Revisión: microencapsulación de alimentos. Revista Facultad Nacional de Agronomía Medellín, 63(2), 5669-5684. https://revistas.unal.edu.co/index.php/refame/article/view/25055/37055
  51. Paudel, A., Worku, Z., Meeus, J., Guns, S., & Van den Mooter, G. (2013). Manufacturing of solid dispersions of poorly water soluble drugs by spray-drying: formulation and process considerations. International Journal of Pharmaceutics, 453(1), 253-284. https://doi.org/10.1016/j.ijpharm.2012.07.015
  52. Pellicer, J., Fortea, M., Trabal, J., Rodríguez-López, M., Carazo-Díaz, C., Gabaldón, J., & Núñez-Delicado, E. (2018). Optimization of the microencapsulation of synthetic strawberry flavour with different blends of encapsulating agents using spray-drying. Powder Technology, 338, 591-598. https://doi.org/10.1016/j.powtec.2018.07.080
  53. Poozesh, S., & Bilgili, E. (2019). Scale-up of pharmaceutical spray-drying using scale-up rules: a review. International Journal of Pharmaceutics, 562, 271-292. https://doi.org/10.1016/j.ijpharm.2019.03.047
  54. Rajabi, H., Ghorbani, M., Jafari, S., Mahoonak, A., & Rajabzadeh, G. (2015). Retention of saffron bioactive components by spray-drying encapsulation using maltodextrin, gum Arabic and gelatin as wall materials. Food Hydrocolloids, 51, 327-337. https://doi.org/10.1016/j.foodhyd.2015.05.033
  55. Ramakrishnan, Y., Adzahan, N., Yusof, Y., & Muhammad, K. (2018). Effect of wall materials on the spray-drying efficiency, powder properties and stability of bioactive compounds in tamarillo juice microencapsulation. Powder Technology, 328, 406-414. https://doi.org/10.1016/j.powtec.2017.12.018
  56. Rezende, Y., Nogueira, J., & Narain, N. (2018). Microencapsulation of extracts of bioactive compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: chemical, morphological and chemometric characterization. Food Chemistry, 254, 281-291. https://doi.org/10.1016/j.foodchem.2018.02.026
  57. Ribeiro, A., Shahgol, M., Estevinho, B., & Rocha, F. (2020). Microencapsulation of vitamin A by spray-drying, using binary and ternary blends of gum Arabic, starch and maltodextrin. Food Hydrocolloids, 108, 106029. https://doi.org/10.1016/j.foodhyd.2020.106029
  58. Rodríguez-Huezo, M., Estrada-Fernández, A., García-Almendárez, B., Ludeña-Urquizo, F., Campos-Montiel, R., & Pimentel-González, D. (2014). Viability of Lactobacillus plantarum entrapped in double emulsion during Oaxaca cheese manufacture, melting and simulated intestinal conditions. LWT - Food Science and Technology, 59(2), Part 1, 768-773. https://doi.org/10.1016/j.lwt.2014.07.004
  59. Rodríguez-Restrepo, Y., Giraldo, G., & Rodríguez-Barona, S. (2017). Solubility as a fundamental variable in the characterization of wall material by spray-drying of food components: application to microencapsulation of Bifidobacterium animalis subsp. lactis. Journal of Food Process Engineering, 40(6), e12557. https://doi.org/10.1111/jfpe.12557
  60. Rouf, S., Jan, T., & Sharma, P. (2018). Non-dairy probiotics – An emerging trend in health care products. International Journal of Current Microbiology and Applied Sciences, 7(10), 131-145. https://doi.org/10.20546/ijcmas.2018.710.015
  61. Saifullah, Md., Islam, M., Ferdowsi, R., Rahman M., & Vuong, V. (2019). Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: a critical review. Trends in Food Science & Technology, 86, 230-251. https://doi.org/10.1016/j.tifs.2019.02.030
  62. Salminen, H., Ankenbrand, J., Zeeb, B., Badolato G., Schäfer, C., Kohlus, R., & Weiss, J. (2019). Influence of spray-drying on the stability of food-grade solid lipid nanoparticles. Food Research International, 119, 741-750. https://doi.org/10.1016/j.foodres.2018.10.056
  63. Santos, S., Rodrigues, L., Costa, S., & Madrona, G. (2019). Antioxidant compounds from blackberry (Rubus fruticosus) pomace: microencapsulation by spray-dryer and pH stability evaluation. Food Packaging and Shelf Life, 20, 100177. https://doi.org/10.1016/j.fpsl.2017.12.001
  64. Shishir, M., Taip, F., Aziz, N., & Talib, R. (2014). Physical properties of spray-dried pink guava (Psidium guajava) powder. Agriculture and Agricultural Science Procedia, 2, 74-81. https://doi.org/10.1016/j.aaspro.2014.11.011
  65. Solanki, H., Pawar, D., Shah, D., Prajapati, V., Jani, G., Mulla, A., & Thakar, P. (2013). Development of microencapsulation delivery system for long-term preservation of probiotics as biotherapeutics agent. BioMed Research International, 2013, 620719. https://doi.org/10.1155/2013/620719
  66. Talón, E., Lampi, A., Vargas, M., Chiralt, A., Jouppila, K., & González-Martínez, C. (2019). Encapsulation of eugenol by spray-drying using whey protein isolate or lecithin: release kinetics, antioxidant and antimicrobial properties. Food Chemistry, 295, 588-598. https://doi.org/10.1016/j.foodchem.2019.05.115
  67. Tan, S., Kha, T., Parks, S., Stathopoulos, C., & Roach, P. (2015). Effects of the spray-drying temperatures on the physiochemical properties of an encapsulated bitter melon aqueous extract powder. Powder Technology, 281, 65-75. https://doi.org/10.1016/j.powtec.2015.04.074
  68. Tan, S., Zhong, C., & Langrish, T. (2020). Encapsulation of caffeine in spray-dried micro-eggs for controlled release: The effect of spray-drying (cooking) temperature. Food Hydrocolloids, 108, 105979. https://doi.org/10.1016/j.foodhyd.2020.105979
  69. Tavares, L., & Zapata, C. (2019). Encapsulation of garlic extract using complex coacervation with whey protein isolate and chitosan as wall materials followed by spray-drying. Food Hydrocolloids, 89, 360-369. https://doi.org/10.1016/j.foodhyd.2018.10.052
  70. Tontul, I., & Topuz, A. (2017). Review. Spray-drying of fruit and vegetable juices: effect of drying conditions on the product yield and physical properties. Trends in Food Science & Technology, 63, 91-102. https://doi.org/10.1016/j.tifs.2017.03.009
  71. Tripathi, M., & Giri, S. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, 9, 225-241. https://doi.org/10.1016/j.jff.2014.04.030
  72. Vishnu, K., Chatterjee, N., Ajeeshkumar, K., Lekshmi, R., Tejpal, C., Mathew, S., & Ravishankar, C. (2017). Microencapsulation of sardine oil: application of vanillic acid grafted chitosan as a bio-functional wall material. Carbohydrate Polymers, 174, 540-548. https://doi.org/10.1016/j.carbpol.2017.06.076
  73. Wang, T., Soyama, S., & Luo, Y. (2016). Development of a novel functional drink from all natural ingredients using nanotechnology. LWT, 73, 458-466. https://doi.org/10.1016/j.lwt.2016.06.050
  74. Wei, Y., Woo, M., Selomulya, C., Wu, W., Xiao, J., & Chen, J. (2019). Numerical simulation of mono-disperse droplet spray dryer under the influence of nozzle motion. Powder Technology, 355, 93-105. https://doi.org/10.1016/j.powtec.2019.07.017
  75. Ye, Q., Georges, N., & Selomulya, C. (2018). Microencapsulation of active ingredients in functional foods: from research stage to commercial food products. Trends in Food Science & Technology, 78, 167-179. https://doi.org/10.1016/j.tifs.2018.05.025
  76. Yingngam, B., Kacha, W., Rungseevijitprapa, W., Sudta, P., Prasitpuriprecha, C., & Brantner, A. (2019). Response surface optimization of spray-dried citronella oil microcapsules with reduced volatility and irritation for cosmetic textile uses. Powder Technology, 355, 372-385. https://doi.org/10.1016/j.powtec.2019.07.065
  77. Yonekura, L., Sun, H., Soukoulis, C., & Fisk, I. (2014). Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fiber by spray-drying: technological characterization, storage stability and survival after in vitro digestion. Journal of Functional Foods, 6, 205-214. https://doi.org/10.1016/j.jff.2013.10.008
  78. Yousefi, S., Emam-Djomeh, Z., & Mousavi, S. (2011). Effect of carrier type and spray-drying on the physicochemical properties of powdered and reconstituted pomegranate juice (Punica granatum L.). Journal of Food Science and Technology, 48(6), 677-684. https://doi.org/10.1007/s13197-010-0195-x
  79. Zhang, C., Khoo, S., Chen, X., & Quek, S. (2020). Microencapsulation of fermented noni juice via micro-fluidic-jet spray-drying: evaluation of powder properties and functionalities. Powder Technology, 361, 995-1005. https://doi.org/10.1016/j.powtec.2019.10.098
  80. Zhang, J., Wen, C., Zhang, H., Duan, Y., & Ma, H. (2020). Recent advances in the extraction of bioactive compounds with subcritical water: a review. Trends in Food Science & Technology, 95, 183-195. https://doi.org/10.1016/j.tifs.2019.11.018

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

1183 | 866 | 575 | 136 | 9




 

Creative Commons License

La Revista proporciona acceso abierto y libre a todos sus contenidos; sin barreras legales, económicas o tecnológicas, para lo cual define la siguiente licencia de publicación y uso de los artículos: Licencia de publicación: Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) Texto completo:https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es