Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio
Publicado: 2021-06-18

Solubilización de fosfatos por bacterias del género Burkholderia aisladas de oxisoles de la altillanura colombiana

Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)
Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)
Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)
ciclos biogeoquímicos ecología microbiana fósforo oxisol rizosfera

Resumen

Los oxisoles de la altillanura en Colombia contienen hasta 400 mg/kg de fósforo. Sin embargo, la fracción disponible para las plantas es inferior a 3,5 mg/kg, lo que obliga la suplementación con fertilizantes fosfóricos. Las plantas pueden adaptarse a estas condiciones por medio de interacciones con bacterias solubilizadoras de fosfatos (BSF) presentes en el suelo. Los oxisoles serían una potencial fuente de BSF; no obstante, existe un desconocimiento de su diversidad en la altillanura colombiana. El objetivo de esta investigación fue aislar, caracterizar e identificar BSF de oxisoles de la altillanura colombiana. A partir de muestras compuestas de suelo con cultivos transitorios y sabana, se obtuvieron 42 aislamientos. De estos, 14 cepas mostraron índices de solubilización de fosfatos entre 1,2 y 2,4. Las cepas M15 y M18 se seleccionaron por su alta actividad de las fosfatasas ácidas con 297,7 ± 89,6 y 638,3 ± 31,2 μg de p-nitrofenilfosfato/mL/h, respectivamente. Los dos aislamientos promovieron el crecimiento vegetal en plantas de arroz en condiciones de invernadero. Mediante la secuenciación parcial del gen 16S rRNA, las dos cepas fueron identificadas dentro del género Burkholderia. Esta investigación amplía el conocimiento de las BSF presentes en los oxisoles de la altillanura colombiana, así como sus capacidades para favorecer la disponibilidad de fósforo en el suelo y promover el crecimiento vegetal.

Moreno-Conn, L. M., M. López Casallas, y F. M. Cruz Barrera. «Solubilización De Fosfatos Por Bacterias Del género Burkholderia Aisladas De Oxisoles De La Altillanura Colombiana». Ciencia &Amp; Tecnología Agropecuaria, vol. 22, n.º 2, junio de 2021, doi:10.21930/rcta.vol22_num2_art:1897.
  1. Acosta-Martínez, V., Cruz, L., Sotomayor-Ramírez, D., & Pérez-Alegría, L. (2007). Enzyme activities as affected by soil properties and land use in a tropical watershed. Applied Soil Ecology, 35(1), 35-45. https://doi.org/10.1016/j.apsoil.2006.05.012
  2. Ahmed, N., & Shahab, S. (2015). Phosphate solubilization: Their mechanism genetics and application. The Internet Journal of Microbiology, 9(1), 1-19. http://doi.org/10.5580/2327
  3. Alam, S., Khalil, S., Ayub, N., & Rashid, M. (2002). In vitro solubilization of inorganic phosphate by Phosphate Solubilizing Microorganisms (PSM) from maize rhizosphere. International Journal of Agriculture and Biology, 4(4), 454-458. https://www.researchgate.net/publication/233815274
  4. Amaya-Gómez, C., Porcel, M., Mesa-Garriga, L., & Gómez, M. (2020). A framework for the selection of plant growth-promoting rhizobacteria based on 2 bacterial competence mechanisms. Applied and Environmental Microbiology, 86(14), 1-13. https://doi.org/10.1128/AEM.00760-20
  5. Aristizábal, A., Baquero, J. E., & Leal, D. (2000). Manejo eficiente de variedades mejoradas de arroz en los llanos orientales. (Boletín Técnico No. 21). http://bibliotecadigital.agronet.gov.co/bitstream/11348/6450/1/Manejo%20eficiente%20de%20variedades%20de%20arroz.pdf
  6. Awais, M., Tariq, M., Ali, A., Ali, Q., Khan, A., Tabassum, B., Nasir, I. A., & Husnain, T. (2017). Isolation, characterization and inter relationship of phosphate solubilizing bacteria from the rhizosfere of sugarcane and rice. Biocatalysis and Agricultural Biotechnology, 11, 312-321. https://doi.org/10.1016/j.bcab.2017.07.018
  7. Barrera, C. M., Jakobs-Schoenwandt, D., Gómez, M. I., Becker, M., Patel, A. V., & Ruppel, S. (2019). Salt stress and hydroxyectoine enhance phosphate solubilisation and plant colonization capacity of Kosakonia radicincitans. Journal of Advanced Research, 19, 91-97. https://doi.org/10.1016/j.jare.2019.03.012
  8. Bashan, Y., Kamnev, A. A., & Bashan, L. E. (2013). A proposal for isolating and testing phosphate-solubilizing bacteria that enhance plant growth. Biology and Fertility of Soils, 49, 1-2. https://doi.org/10.1007/s00374-012-0756-4
  9. Becerra, J., Quintero, D., Martinez, M., & Matiz, A. (2011). Characterization of phosphate solubilizing microorganisms isolated from soils planted with cape gooseberry (Physalis peruviana L.). Revista Colombiana de Ciencias Hortícolas, 5(2), 195-208. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S201121732011000200004
  10. Bhardwaj, S., Dipta, B., Kirti, S., & Kaushal, R. (2017). Screening of efficient rhizobacteria associated with cauliflower (Brassica oleracea var. botrytis L.) for plant growth promoting traits. Journal of Applied and Natural Science, 9(1), 167-172. https://doi.org/10.31018/jans.v9i1.1166
  11. Bhattacharyya, P., Goswami, M., & Bhattacharyya, L. (2016). Perspective of beneficial microbes in agriculture under changing climatic scenario: A review. Journal of Phytology, 8, 26-41. https://doi.org/10.19071/jp. 2016.v8.3022
  12. Billah, M., Khan, M., Bano, A., Hassan, T. U., Munir, A., & Gurmani, A. R. (2019). Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal, 36(10), 904-916. https://doi.org/10.1080/01490451.2019.1654043
  13. Borges-Baldotto, L., Altoé-Baldotto, M., Pasqualoto-Canellas, L., Bressan-Smith, R., & Lopes-Olivares, F. (2010). Growth promotion of pineapple 'Vitória' by humic acids and Burkholderia spp. during acclimatization. Revista Brasileira de Ciência do Solo, 34(5), 1593-1600. https://doi.org/10.1590/S0100-06832010000500012
  14. Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic and available forms of phosphorus in soils. Soil Science, 59(1), 39-46. http://doi.org/10.1097/00010694-194501000-00006
  15. Caballero-Mellado, J., Martínez-Aguilar, L., Paredes- Valdez, G., & Estrada-de los Santos, P. (2004). Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. International Journal of Systematic and Evolutionary Microbiology, 54, 1165-1172. https://doi.org/10.1099/ijs.0.02951-0
  16. Caballero, T., Camelo, M., Bonilla, R., & Martínez, M. (2007). Determinación de actividad fosfato solubilizadora por bacterias aisladas a partir de suelos algodoneros en los departamentos del Cesar y Meta. Suelos Ecuatoriales, 37(1), 94-100. https://sites.google.com/site/suelosecuatoriales/descarga-de-articulos/volumen-37-1
  17. Cerón, L. E., & Aristizábal, F. A. (2012). Dinámica del ciclo del nitrógeno y fosforo en suelos. Revista Colombiana de Biotecnología, 14(1), 285-295. https://repositorio.unal.edu.co/handle/unal/69611
  18. Chakraborty, B. N., Chakraborty, U., Saha, A., Sunar, H., & Dey, P. (2010). Evaluation of phosphate solubilizers from soils of north Bengal and their diversity analysis. World Journal of Agricultural Sciences, 6(2), 195-200. https://www.researchgate.net/publication/242630621_Evaluation_of_Phosphate_Solubilizers_from_Soils_of_North_Bengal_and_Their_Diversity_Analysis
  19. Chung, H., Park, M., Madhaiyan, M., Seshadri, S., Song, J., Cho, H., & Sa, T. (2005). Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biology and Biochemistry, 37(10), 1970-1974. https://doi.org/10.1016/j.soilbio.2005.02.025
  20. Coenye, T., & Vandamme, P. (2003). Diversity and significance of Burkholderia species occupying diverse ecological niches. Environmental Microbiology, 5(9), 719-729. https://doi.org/10.1046/j.1462-2920.2003.00471.x
  21. Collavino, M., Sansberro, P., Mroginski, L., & Aguilar, M. (2010). Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biology and Fertility of Soils, 46, 727-738. https://doi.org/10.1007/s00374-010-0480-x
  22. Corrales-Ramírez, L. C., Arévalo-Galvez, Z. Y., & Moreno-Burbano, V. E. (2014). Solubilización de fosfatos: una función microbiana importante en el desarrollo vegetal. Nova, 12(21), 68-79. https://hemeroteca.unad.edu.co/index.php/nova/article/view/997/983
  23. Daneshgar, S., Callegari, A., Capodaglio, A. G., & Vaccari, D. (2018). The potential phosphorus crisis: Resource conservation and possible escape technologies: A Review. Resources, 7(2), 37. https://doi.org/10.3390/resources7020037
  24. Dar, A. I., Saleem, F., Ahmad, M., Tariq, M., Khan, A., Ali, A., Tabassum, B., Ali, Q., Ali, G., Rashid, B., Nasir, I. A., & Husnain, T. (2014). Characterization and efficiency assessment of PGPR for enhancement of rice (Oryza sativa L.) yield. Advancements in Life Sciences, 2(1), 38-45. http://www.als-journal.com/articles/vol2issue1/217.14/PDF.pdf
  25. Dawwam, G. E., Elbeltagy, A., Emara, H. M., Abbas, I. H., & Hassan, M. M. (2013). Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant. Annals of Agricultural & Crop Sciences, 58(2), 195-201. https://doi.org/10.1016/j.aoas.2013.07.007
  26. De los Santos-Villalobos, S., Barrera-Galicia, C., Hernández-Rodríguez, L. E., & Peña- Cabriales, J. J. (2015). Potencial uso agro-biotecnológico de cepas del género Burkholderia aisladas de huertas de mango (Mangifera indica L.) v. Ataulfo en México. Revista Latinoamericana de Recursos Naturales, 11(2), 78-86. http://revista.itson.edu.mx/index.php/rlrn/article/view/241
  27. Enz, M., Dachler, C. H., & Novartis. (1998). Compendio para la identificación de los estadios fenológicos de especies mono y dicotiledóneas cultivadas, Escala BBCH extendida. https://www.agro.basf.es/Documents/es_files/pdf_1_files/services_files/descarga.pdf
  28. Estrada-De los Santos, P., Bustillos-Cristales, R., Caballero-Mellado, J. (2001). Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Applied and Environmental Microbiology, 67(6), 2790-2798. http://doi.org/10.1128/AEM.67.6.2790–2798.2001
  29. Estrada, G. A., Divan-Baldani, V. L., Messias de Oliveira, D., Urquiaga, S., Baldani, J. I. (2013). Selection of phosphate-solubilizing diazotrophic Herbaspirillum and Burkholderia strains and their effect on rice crop yield and nutrient uptake. Plant and Soil, 369, 115-129. https://doi.org/10.1007/s11104-012-1550-7
  30. Fageria, N. K., & Baligar, V. C. (2008). Ameliorating soil acidity of tropical oxisols by liming for sustainable crop production. Advances in Agronomy, 99, 345-399. https://doi.org/10.1016/S0065-2113(08)00407-0
  31. Gao, M., Zhou, J. J., Wang, E., Chen, Q., Xu, J., & Sun, J. (2015). Multiphasic characterization of a plant growth promoting bacterial strain, Burkholderia sp. 7016 and its effect on tomato growth in the field. Journal of Integrative Agriculture, 14(9), 1855-1863. https://doi.org/10.1016/S2095-3119(14)60932-1
  32. Glickmann, E., & Deessaux, Y. (1995). A critical examination of the specificity of the Salkosky reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 61(2), 793-796. https://aem.asm.org/content/aem/61/2/793.full.pdf
  33. Gumiere, T., Rousseau, A. N., da Costa, D. P., Cassetari A., Raposo, S., Andreote F. D., Gumiere, S., & Pavinato, P. S. (2019). Phosphorus source driving the soil microbial interactions and improving sugarcane development. Scientific Reports, 9, 4400. https://doi.org/10.1038/s41598-019-40910-1
  34. Karki, H. S. (2010). Physiological, biochemical and molecular characteristics associated with virulence of Burkholderia glumae: the major causative agent of bacterial panicle blight of rice (Master's thesis, Louisiana State University, Louisiana, U.S.A. https://digitalcommons.lsu.edu/cgi/viewcontent.cgi?article=1785&context=gradschool_theses
  35. King, E. O., Ward, M. K., & Raney, D. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. Journal of Laboratory and Clinical Medicine, 44(2), 301-307. https://www.translationalres.com/article/0022-2143(54)90222-X/pdf
  36. Krishnaraj, P. U., & Dahale S. (2014). Mineral Phosphate Solubilization: Concepts and Prospects in Sustainable Agriculture. Proceedings of the Indian National Science Academy, 80(2), 389-405. http://doi.org/10.16943/PTINSA/2014/V80I2/55116
  37. Kurita, T., & Tabei, H. (1967). On the causal agent of bacterial grain rot of rice [abstract in Japanese]. Annals of the Phytopathological Society of Japan, 33, 111. https://www.cabi.org/isc/datasheet/44964
  38. Kwak, G. Y., Choi, O., Goo, E., Rang, Y., Kim, J., & Hwang, I. (2020). Quorum sensing-independent cellulase-sensitive pellicle formation is critical for colonization of Burkholderia glumae in rice plants. Frontiers in Microbiology, 10(3090), 1-10. https://doi.org/10.3389/fmicb.2019.03090
  39. Leitão, J. H., Sousa, S. A., Ferreira, A. S., Ramos, C. G., Silva, I. N., & Moreira L. M. (2010). Pathogenicity, virulence factors, and strategies to fight against Burkholderia cepacia complex pathogens and related species. Applied Microbiology and Biotechnology, 87, 31-40. http://doi.org/10.1007/s00253-010-2528-0
  40. Li, G. X., Wu, X. Q., & Ye, J. R. (2013). Biosafety and colonization of Burkholderia multivorans WS-FJ9 and its growth-promoting effects on poplars. Applied Microbiology and Biotechnology, 97, 10489-10498. https://doi.org/10.1007/s00253-013-5276-0
  41. Liang, J. L., Liu, J., Jia, P., Yang, T.T., Zeng, Q.W., Zhang, S.C., Liao, B., Shu, W. S., & Li, J. T. (2020). Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. The ISME Journal, 14, 1600-1613. https://doi.org/10.1038/s41396-020-0632-4
  42. Liu, W. H., Chen, F. F., Wang, C. E., Fu, H. H., Fang, X. Q., Ye, J. R., & Shi, J. Y. (2019). Indole-3-Acetic Acid in Burkholderia pyrrocinia JK-SH007: Enzymatic Identification of the Indole-3-Acetamide Synthesis Pathway. Frontiers in Microbiology, 10(2559). https://doi.org/10.3389/fmicb.2019.02559
  43. Lynch, J. P. (2007). Roots of the second green revolution. Australian Journal of Botany, 55(5), 493-512. https://doi.org/10.1071/BT06118
  44. Mehta, P., Walia, A., Kulshrestha, S., Chauhan, A., & Shirkot, C. K. (2015). Efficiency of plant growth promoting P-solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions. Journal of Basic Microbiology, 55(1), 33-44. https://doi.org/10.1002/jobm.201300562
  45. Mora, E., & Toro, M. (2007). Estimulación del crecimiento vegetal por Burkholderia cepacia, una cepa nativa de suelos ácidos de sabanas venezolanas. Agronomía Tropical, 57(2), 123-128. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0002192X2007000200006&lng=es&tlng=es
  46. Motamedi, H., Aalivand, S., Najafzadeh-Varzi, H., & Mohammadi, M. (2016). Screening cabbage rhizosphere as a habitat for isolation of phosphate-solubilizing bacteria. Environmental and Experimental Biology, 14, 173-181. http://doi.org/10.22364/eeb.14.24
  47. Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170(1), 265-270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
  48. Oliveira, C. A., Alves, V. M. C., Marriel, I. E., Gomes, E. A., Scotti, M. R., Carneiro, N. P., Guimarães, C. T., & Sá, N. M. H. (2009). Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biology and Biochemistry, 41(9), 1782-1787. https://doi.org/10.1016/j.soilbio.2008.01.012
  49. Ortiz, T., Ocampo, V., Prada, L. D., & Franco-Correa, M. (2016). Preservation methods for actinobacterias with phosphate solubilizing activity. Revista Colombiana de Biotecnología, 18(2), 32-39. http://dx.doi.org/10.15446/rev.colomb.biote.v18n2.47683
  50. Othman, R., & Panhwar, Q. A. (2014). Phosphate-Solubilizing Bacteria Improves Nutrient Uptake in Aerobic Rice. In M., Khan, A. Zaidi, & J. Musarrat (Eds.), Phosphate Solubilizing Microorganisms: Principles and Application of Microphos Technology (pp. 207-224). https://doi.org/10.1007/978-3-319-08216-5_9
  51. Pande, A., Kaushik, S., Pandey, P., & Negi, A. (2019). Isolation, characterization, and identification of phosphate-solubilizing Burkholderia cepacia from the sweet corn cv. Golden Bantam rhizosphere soil and effect on growth-promoting activities, International Journal of Vegetable Science, 26(6), 1-17. https://doi.org/10.1080/19315260.2019.1692121
  52. Panhwar, Q. A., Othman, R., Rahman, Z. A., Meon, S., & Ismai, M. R. (2012). Isolation and characterization of phosphate-solubilizing bacteria from aerobic rice. African Journal of Biotechnology, 11(11), 2711-2719. http://doi.org/10.5897/AJB10.2218
  53. Pérez, E., Sulbarán, M., Ball, M., & Yarzábal, L. A. (2007). Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biology and Biochemistry, 39(11), 2905-2914. https://doi.org/10.1016/j.soilbio.2007.06.017
  54. Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiology, 17, 362-370. https://www.scienceopen.com/document?vid=44a8aa7f-fad0-4038-a97b-a766d1a3b6fb
  55. Pineda, M. E. (2014). Phosphate solubilization as a microbial strategy for promoting plant growth. Ciencia y Tecnología Agropecuaria, 15(1), 101-113. https://doi.org/10.21930/rcta.vol15_num1_art:401
  56. Price, E. P., Sarovich, D. S., Webb, J. R., Hall, C. M., Jaramillo, S. A., Sahl, J. W., Kaestli, M., Mayo, M., Harrington, G., Baker, A. L., Sidak-Loftis, L. C., Settles, E. W., Lummis, M., Schupp, J. M., Gillece, J. D., Tuanyok, A., Warner, J., Busch, J. D., Keim, P., Currie, B. J., & Wagner, D. M. (2017). Phylogeographic, genomic, and meropenem susceptibility analysis of Burkholderia ubonensis. Plos Neglected Tropical Diseases, 11(9), 1-18. https://doi.org/10.1371/journal.pntd.0005928
  57. Puente, M., Bashan, Y., Li, C., & Lebsky, V. (2004). Microbial populations and activities in the rhizoplane of rock – weathering desert plants. Plant Biology, 6, 643-650. https://doi.org/10.1055/s-2004-821100
  58. Rashid, M., Khalil, S., Ayud, N., Alam, S., & Latif, F. (2004). Organic acids production and phosphate solubilization byphosphate solubilizing microorganisms (PSM) under in vitro conditions. Pakistan Journal of Biological Sciences, 7(2), 187-196. http://doi.org/10.3923/pjbs.2004.187.196
  59. Richardson, A., E., Lynch, J. P., Ryan, P. R., Delhaize, E., Smith, F. A., Smith, S. E., Harvey, P. R., Ryan, M. H., Veneklaas, E. J., Lambers, H., Oberson, A., Culvoner, R. A., & Simpson, R. (2011). Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil, 349(1-2), 121-156. https://doi.org/10.1007/s11104-011-0950-4
  60. Rivas, L., Hoyos, P., Amézquita, E., & Molina, D. L. (2004). Manejo y uso de los suelos de la Altillanura Colombiana. En Centro Internacional de Agricultura Tropical (CIAT) (Eds.), Manejo y uso de los suelos de la Altillanura Colombiana. Análisis económico de una estrategia para su conservación y mejoramiento. Construcción de la capa arable (pp. 6-12). CIAT. http://ciat-library.ciat.cgiar.org/Articulos_Ciat/degradacion_capa_arable.pdf
  61. Rojas-Rojas, F. U., López-Sánchez, D., Meza-Radilla, G., Méndez-Canarios, A., Ibarra, J. A., & Estrada-de los Santos, P. (2019). El controvertido complejo Burkholderia cepacia, un grupo de especies promotoras del crecimiento vegetal y patógenas de plantas, animales y humanos. Revista Argentina de Microbiología, 51(1), 84-92. https://doi.org/10.1016/j.ram.2018.01.002
  62. Rooney, D., & Clipson, N. (2009). Phosphate addition and plant species alters microbial community structure in acidic upland grassland. Microbial Ecology, 57(1), 4-13. http://doi.org/10.1007/s00248-008-9399-2
  63. Sashidhar, B., & Podile, A. R. (2010). Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. Journal of Applied Microbiology, 109(1), 1-12. https://doi.org/10.1111/j.1365-2672.2009.04654.x
  64. Sahasrabudhe, M. M. (2011). Screening of rhizobia for indole acetic acid production. Annals of Biological Research, 2(4), 460-468. http://scholarsresearchlibrary.com/ABR-vol2-iss4/ABR-2011-2-4-460-468.pdf
  65. Sandanakirouchenane, A., Haque, E., & Geetha, T. (2017). Recent studies on N2 fixing Burkholderia isolates as a biofertilizer for the sustainable agriculture. International Journal of Current Microbiology and Applied Sciences, 6(11), 2780-2796. https://doi.org/10.20546/ijcmas.2017.611.329
  66. Satyaprakash, M., Nikitha, T., Reddi, E. U. B., Sadhana, B., & Satya-Vani, S. (2017). A review on phosphorous and phosphate solubilising bacteria and their role in plant nutrition. International Journal of Current Microbiology and Applied Sciences, 6(4), 2133-2144. https://doi.org/10.20546/ijcmas.2017.604.251
  67. Sinha, R., Khot, L. R., & Schroeder, B. K. (2017). FAIMS based sensing of Burkholderia cepacia caused sour skin in onions under bulk storage condition. Journal of Food Measurement and Characterization, 11(7), 1578-1585. https://doi.org/10.1007/s11694-017-9537-y
  68. Soil Survey Staff. (1999). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. Washington, DC, USA. (2nd ed.). Recuperado de https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051232.pdf
  69. Soil Survey Staff. (2014). Keys to Soil Taxonomy. (12th ed.). https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/taxonomy/?cid=nrcs142p2_053580
  70. Soltangheisi, A., de Moraes, M. T., Cherubin, M. R., Alvarez, D. O., de Souza, L. F., Bieluczyk, W., … de Camargo, P. B. (2019). Forest conversion to pasture affects soil phosphorus dynamics and nutritional status in Brazilian Amazon. Soil and Tillage Research, 194, 104330. https://doi.org/10.1016/J.STILL.2019.104330
  71. Stephen, J., & Jisha, M. S. (2011). Gluconic acid production as the principal mechanism of mineral phosphate solubilization by Burkholderia sp. (MTCC 8369). Journal of Tropical Agriculture, 49(1-2), 99-103. https://www.researchgate.net/publication/259299955
  72. Stone, J. K., Mayo, M., Grasso, S. A., Ginther, J. L., Warrington, S. D., Allender, C. J., … Tuanyok, A. (2012). Detection of Burkholderia pseudomallei O-antigen serotypes in near-neighbor species. BMC Microbiology, 12(250), 1-8. http://doi.org/10.1186/1471-2180-12-250
  73. Stoyanova, M., Pavlina, I., Moncheva P., & Bogatzevska, P. (2007). Biodiversity and incidence of Burkholderia Species. Biotechnology & Biotechnological Equipment, 21(3), 306-310. https://doi.org/10.1080/13102818.2007.10817465
  74. Sousa, S. A., Ramos, C. G., & Leitäo J. H. (2011). Burkholderia cepacia complex: Emerging multihost pathogens equipped with a wide range of virulence factors and determinants. International Journal of Microbiology, 2011(607575), 1-9. https://doi.org/10.1155/2011/607575
  75. Suárez-Moreno, Z. R., Caballero-Mellado, J., Coutinho, B. G., Mendonça-Previato, L., James, E. K., & Venturi, V. (2012). Common features of environmental and potentially beneficial plant associated Burkholderia. Microbial Ecology, 63(2), 249-266. https://doi.org/10.1007/s00248-011-9929-1
  76. Suliasih, S., & Widawati, S. (2005). Isolation and identification of phosphate solubilizing and nitrogen fixing bacteria from soil in Wamena Biological Garden, Jayawijaya, Papua. Biodiversitas, 6(5), 175-177. https://doi.org/10.13057/biodiv/d060307
  77. Tabatabai, M., & Bremner, J. M. (1969). Use of p-Nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1(4), 301-307. https://doi.org/10.1016/0038-0717(69)90012-1
  78. Useche, Y. M., Valencia, H., & Pérez, H. (2004) Caracterización de bacterias y hongos solubilizadores de fosfato bajo tres usos de suelo en el sur del trapecio amazónico. Acta Biológica Colombiana, 9(2), 129-130. https://revistas.unal.edu.co/index.php/actabiol/article/view/27408/27668
  79. Venturi, V., Friscina, A., Bertani, I., Devescovi, G., & Aguilar, C. (2004). Quorum sensing in the Burkholderia cepacia complex. Research in Microbiology, 155(4), 238-244. https://doi.org/10.1016/j.resmic.2004.01.006
  80. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38. http://doi.org/10.1097/00010694-193401000-00003
  81. Walpola, B. C., & Yoon, M. H. (2013). Isolation and characterization of phosphate solubilizing bacteria and their co-inoculation efficiency on tomato plant growth and phosphorous uptake. African Journal of Microbiology Research, 7(3), 266-275. http://doi.org/10.5897/AJMR12.2282
  82. Wang, M., Tachibana, S., Murai, Y., Li, L., Ling Lau, S. Y., Cao, M., Zhu, G., Hashimoto, M., & Hashidoko Y. (2016). Indole-3-acetic acid produced by Burkholderia heleia acts as a phenylacetic acid antagonist to disrupt tropolone biosynthesis in Burkholderia plantarii. Scientific Reports, 6, 22596. https://doi.org/10.1038/srep22596
  83. Weber, O. B., Muniz, C. R., Vitor, A. O., Freire, F. C. O., & Oliveira, V. M. (2007). Interaction of endophytic diazotrophic bacteria and Fusarium oxysporum f. sp. Cubense on plantlets of banana ‘Maça’. Plant and Soil, 298, 47-56. https://doi.org/10.1007/s11104-007-9335-0
  84. Wyngaard, N., Cabrera, M. L., Klaus, J. A., & Bünemann, E. K. (2016). Phosphorus in the coarse soil fraction is related to soil organic phosphorus mineralization measured by isotopic dilution. Soil Biology & Biochemistry, 96, 107-118. https://doi.org/10.1016/j.soilbio.2016.01.022
  85. Yang, W., He, Y., Xu, L., Zhang, H., & Yan, Y. (2016). A new extracellular thermo-solvent-stable lipase from Burkholderia ubonensis SL-4: Identification, characterization and application for biodiesel production. Journal of Molecular Catalysis B: Enzymatic, 126, 76-89. http://dx.doi.org/10.1016/j.molcatb.2016.02.005
  86. Zhao, K., Penttinen, P., Zhang, X., Ao, X., Liu, M., Yu, X., & Chen, Q. (2014). Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiological Research, 169(1), 76-82. https://doi.org/10.1016/J.MICRES.2013.07.003
  87. Zhu, J., Li, M., & Whelan, M. (2018). Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Science of the Total Environment, 612, 522-537. https://doi.org/10.1016/j.scitotenv.2017.08.095

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

364 | 212 | 78




 

Creative Commons License Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2021 Ciencia & Tecnología Agropecuaria