Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio

Potencial bioquímico de metano de desechos agrícolas como fuente renovable alternativa para la producción de energía eléctrica en Cuba

Universidad de Sancti Spíritus
University of Sancti Spíritus
University of Sancti Spíritus
University of Sancti Spíritus
University of Sancti Spíritus
Universidad Metropolitana de Ecuador
SRH - Hochschule Berlin
biomasa agrícola biometano biogas energía renovable paja de caña de azúcar

Resumen

El modelo económico cubano actual se centra en las fuentes renovables de producción de energía, de acuerdo con las estrategias de desarrollo sostenible para 2030, pero dichas estrategias no consideran el biogás, debido, entre otras causas, al poco conocimiento de su potencial real. Siguiendo la metodología del proceso de digestión anaeróbica en lote, el estudio muestra el potencial del biometano contenido en los residuos sólidos agrícolas más
importantes que se generan en Cuba, es decir, paja de arroz, paja de caña, paja de maíz, paja de frijol, paja de plátano (hojas), cáscara y café pergamino. El potencial bioquímico del metano se ensayó mediante reactores discontinuos a escala de laboratorio (585 ml), utilizando como inóculo un lodo anaeróbico de estiércol de cerdo en condiciones
mesófilas (35 ± 2 °C). Se determinaron los parámetros fisicoquímicos (sólidos volátiles totales, pH, alcalinidad, concentración de ácidos grasos volátiles) para evaluar la estabilidad del proceso, y se cuantificó la producción diaria de biogás; posteriormente, se calculó el potencial bioquímico del metano para todos los sustratos. Los resultados mostraron que la paja de maíz (0,42 l CH4 por gramo de sólidos volátiles) contenía el mayor potencial de biometano. Se obtuvo estabilidad en todos los sistemas y se demostró la viabilidad del inóculo utilizado para poner en marcha los digestores que tratan estos residuos. El potencial total de metano obtenido fue de 1258 106 m3/año, lo suficiente para generar 3750 GWh de energía por año, equivalente al 18 % de la generación total de electricidad anual del país.

López-Dávila, E., J. . Jiménez Hernández, L. M. López González, E. L. Barrera Cardoso, E. Bravo Amarante, L. M. Contreras Velázquez, y O. Romero-Romero. «Potencial bioquímico De Metano De Desechos agrícolas Como Fuente Renovable Alternativa Para La producción De energía eléctrica En Cuba». Ciencia &Amp; Tecnología Agropecuaria, vol. 23, n.º 1, enero de 2022, doi:10.21930/rcta.vol23_num1_art:1890.
  1. Abdul Aziz, N. I. H., Hanafiah, M. M., & Mohamed Ali, M. Y. (2019). Sustainable biogas production from agrowaste and effluents – A promising step for small-scale industry income. Renewable Energy, 132, 363-369. https://doi.org/10.1016/J.RENENE.2018.07.149
  2. Arrastía-Avila, M. A., & Glidden, L. M. (2017). Cuba’s energy revolution and 2030 policy goals: more penetration of renewable energy in electricity generation. International Journal of Cuban Studies, 9(1), 73. https://doi.org/10.13169/intejcubastud.9.1.0073
  3. Barrera, E. L., Spanjers, H., Romero, O., Rosa, E., & Dewulf, J. (2020). A successful strategy for start‐up of a laboratory‐scale UASB reactor treating sulfate‐rich sugar cane vinasse. Journal of Chemical Technology & Biotechnology, 95(1), 205-212. https://doi.org/10.1002/jctb.6222
  4. Barrera-Cardoso, E., Odales-Bernal, L., Carabeo-Pérez, A., Alba-Reyes, Y., & Hermida-García, F. O. (2020). Recopilación de aspectos teóricos sobre las tecnologías de producción de biogás a escala rural. Tecnología Química, 40(2), 303-321. http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S2224-61852020000200303
  5. Björkman, M. (2020). Small scale biogas boom in Cuba. Bioenergy International, Digital Biogas Special, 1, 26-27. https://bioenergyinternational.com/app/uploads/sites/3/2020/01/Digital_BiogasTech2020.pdf
  6. Cano-Ricardo, Y., Rodríguez-Tejeda, R. C., Soberats-Cobos, J., & Velázquez-Cruz, R. (2019). Administration of the operation of biogas plants in the removal of pollutants. Ciencias Holguín, 25(1), 58-68. https://www.redalyc.org/journal/1815/181558076006/movil/
  7. Cano-Ricardo, Y., Vargas-Leyva, A., Soberats-Cobos, J., & Pérez-Blanco, H. (2020). Procedure to evaluate the efficiency in fixed dome biogas plants. Ciencias Holguín, 26(4), 78-93. https://www.redalyc.org/journal/1815/181564620007/181564620007.pdf
  8. Carabeo-Pérez, A., Odales-Bernal, L., López-Dávila, E., & Jiménez, J. (2021). Biomethane potential from herbivorous animal’s manures: Cuban case study. Journal of Material Cycles and Waste Management, 23(4), 1404-1411. https://doi.org/10.1007/s10163-021-01220-9
  9. Chandra, R., Takeuchi, H., & Hasegawa, T. (2012). Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews, 16(3), 1462-1476. https://doi.org/10.1016/j.rser.2011.11.035
  10. Clemens, H., Bailis, R., Nyambane, A., & Ndung’u, V. (2018). Africa Biogas Partnership Program: A review of clean cooking implementation through market development in East Africa. Energy for Sustainable Development, 46, 23-31. https://doi.org/10.1016/J.ESD.2018.05.012
  11. Contreraz Velazquez, L. M., Pereda Reyes, I., & Romero Romero, O. (2012). Aprovechamiento energético de residuos arroceros por bio-conversión. DYNA Energía y Sostenibilidad, 1(1), 11. https://doi.org/http://dx.doi.org/10.6036/ES1010
  12. Contreras Velázquez, L. M., Pereda Reyes, I., Guillen Pereira, L., & Romero Romero, O. (2019). Efecto ambiental de la valorización energética por biogás de la paja de arroz. Revista Científica Agroecosistemas, 7(1), 90-96. https://aes.ucf.edu.cu/index.php/aes/article/view/248
  13. Corro, G., Pal, U., & Cebada, S. (2014). Enhanced biogas production from coffee pulp through deligninocellulosic photocatalytic pre-treatment. Energy Science & Engineering, 2(4), 177-187. https://doi.org/10.1002/ese3.44
  14. Dada, O., & Mbohwa, C. (2018). Energy from waste: A possible way of meeting goal 7 of the sustainable development goals. Materials Today: Proceedings, 5(4), 10577-10584. https://doi.org/10.1016/J.MATPR.2017.12.390
  15. Darwin, Cheng, J. J., Liu, Z., Gontupil, J., & Kwon, O.-S. (2014). Anaerobic co-digestion of rice straw and digested swine manure with different total solid concentration for methane production. International Journal of Agricultural and Biological Engineering, 7(6), 79-90. https://doi.org/10.3965/j.ijabe.20140706.010
  16. EPA, U. S. (2019). Combined Heat and Power (CHP) Partnership. Methods for calculating efficiency. https://www.epa.gov/chp/chp-benefits
  17. Fernandez, M., Williams, J., Figueroa, G., Graddy-Lovelace, G., Machado, M., Vasquez, L., Perez, N., Casimiro, L., Romero, G., & Funes-Aguilar, F. (2018). New opportunities, new challenges: Harnessing Cuba’s advances in agroecology and sustainable agriculture in the context of changing relations with the United States. Elementa: Science of the Anthropocene, 6(1), 76. https://doi.org/10.1525/elementa.337
  18. Filippín, A. J., Luna, N. S., Pozzi, M. T., & Pérez, J. D. (2017). Obtención y caracterización de carbón activado a partir de residuos olivícolas y oleícolas por activacion física. Avances en Ciencias e Ingeniería, 8(3), 59-71. https://www.redalyc.org/pdf/3236/323652916007.pdf
  19. Garfí, M., Martí-Herrero, J., Garwood, A., & Ferrer, I. (2016). Household anaerobic digesters for biogas production in Latin America: A review. Renewable and Sustainable Energy Reviews, 60, 599-614. https://doi.org/10.1016/J.RSER.2016.01.071
  20. Guerini Filho, M., Steinmetz, R. L. R., Bezama, A., Hasan, C., Lumi, M., & Konrad, O. (2019). Biomass availability assessment for biogas or methane production in Rio Grande do Sul, Brazil. Clean Technologies and Environmental Policy, 21(6), 1353-1366. https://doi.org/10.1007/s10098-019-01710-3
  21. Hermida García, F. O., Barrera Cardoso, E. L., Alba, Y., López González, L., Pedraza Garciga, J., & Álvarez-Guerra Plasencia, M. A. (2020). Impact of biogas production on the energy matrix of the guayos porcine farm. Revista Universidad y Sociedad, 12(5), 254-262. https://rus.ucf.edu.cu/index.php/rus/article/view/1706
  22. Hernández-Cobián, M. A., & Rivera-Sasso, E. (2017). Diagnóstico de la generación de residuos sólidos urbanos en el residencial Río Viejo. Journal of Energy, Engineering Optimization and Sustainability, 1(1), 17-34. https://revistas.ujat.mx/index.php/JEEOS/article/view/1730
  23. Herrero García, N., Benedetti, M., & Bolzonella, D. (2019). Effects of enzymes addition on biogas production from anaerobic digestion of agricultural biomasses. Waste and Biomass Valorization, 10(12), 3711-3722. https://doi.org/10.1007/s12649-019-00698-7
  24. Kainthola, J., Kalamdhad, A. S., & Goud, V. V. (2019). A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques. Process Biochemistry, 84, 81-90. https://doi.org/10.1016/J.PROCBIO.2019.05.023
  25. Karray, R., Karray, F., Loukil, S., Mhiri, N., & Sayadi, S. (2017). Anaerobic co-digestion of Tunisian green macroalgae Ulva rigida with sugar industry wastewater for biogas and methane production enhancement. Waste Management, 61, 171-178. https://doi.org/10.1016/J.WASMAN.2016.11.042
  26. Kaur, M., Neetu, Pal Verma, Y., & Chauhan, S. (2020). Effect of chemical pre-treatment of sugarcane bagasse on biogas production. Materials Today: Proceedings, 21, 1937-1942. https://doi.org/10.1016/j.matpr.2020.01.278
  27. Kelebe, H. E. (2018). Returns, setbacks, and future prospects of bio-energy promotion in northern Ethiopia: The case of family-sized biogas energy. Energy, Sustainability and Society, 8(30), 14. https://doi.org/10.1186/s13705-018-0171-2
  28. Koppelmäki, K., Parviainen, T., Virkkunen, E., Winquist, E., Schulte, R. P. O., & Helenius, J. (2019). Ecological intensification by integrating biogas production into nutrient cycling: Modeling the case of agroecological symbiosis. Agricultural Systems, 170, 39-48. https://doi.org/10.1016/J.AGSY.2018.12.007
  29. Korkeakoski, M. (2021). Towards 100% Renewables by 2030: Transition alternatives for a sustainable electricity sector in Isla de la Juventud, Cuba. Energies, 14(10), 2862. https://doi.org/10.3390/en14102862
  30. Koryś, K. A., Latawiec, A. E., Grotkiewicz, K., & Kuboń, M. (2019). The review of biomass potential for agricultural biogas production in Poland. Sustainability, 11(22). https://doi.org/10.3390/su11226515
  31. Li, L., Yang, X., Li, X., Zheng, M., Chen, J., & Zhang, Z. (2010). The influence of inoculum sources on anaerobic biogasification of NaOH-treated corn stover. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33(2), 138-144. https://doi.org/10.1080/15567030902937192
  32. Marchetti, R., Vasmara, C., Florio, G., & Borin, M. (2016). Biomethanation potential of wetland biomass in codigestion with pig slurry. Waste and Biomass Valorization, 7(5), 1081-1089. https://doi.org/10.1007/s12649-016-9515-3
  33. Martínez-Gutiérrez, E. (2018). Biogas production from different lignocellulosic biomass sources: advances and perspectives. 3 Biotech, 8(5), 1-18. https://doi.org/10.1007/s13205-018-1257-4
  34. Momayez, F., Karimi, K., & Taherzadeh, M. J. (2019). Energy recovery from industrial crop wastes by dry anaerobic digestion: A review. Industrial Crops and Products, 129, 673-687. https://doi.org/10.1016/J.INDCROP.2018.12.051
  35. Moustakas, K., Parmaxidou, P., & Vakalis, S. (2020). Anaerobic digestion for energy production from agricultural biomass waste in Greece: Capacity assessment for the region of Thessaly. Energy, 191, 116556. https://doi.org/10.1016/J.ENERGY.2019.116556
  36. Muske, A. N., & Venkateswara Rao, P. (2019). Evaluation of biogas production potential by anaerobic co-digestion with substrate mixture of fruit waste, lawn grass, and manures. In M. Rathinasamy, S. Chandramouli, K. B. V. N. Phanindra, & U. Mahesh (Eds.), Water Resources and Environmental Engineering II (pp. 91-99). Springer Singapore. https://doi.org/https://doi.org/10.1007/978-981-13-2038-5_9
  37. Mussoline, W., Esposito, G., Giordano, A., & Lens, P. (2013). The Anaerobic Digestion of Rice Straw: A Review. Critical Reviews in Environmental Science and Technology, 43(9), 895-915. https://doi.org/10.1080/10643389.2011.627018
  38. Mustafa, A. M., Li, H., Radwan, A. A., Sheng, K., & Chen, X. (2018). Effect of hydrothermal and Ca(OH)2 pre-treatments on anaerobic digestion of sugarcane bagasse for biogas production. Bioresource Technology, 259, 54-60. https://doi.org/10.1016/J.BIORTECH.2018.03.028
  39. Nevzorova, T., & Kutcherov, V. (2019). Barriers to the wider implementation of biogas as a source of energy: A state-of-the-art review. Energy Strategy Reviews, 26, 100414. https://doi.org/10.1016/J.ESR.2019.100414
  40. Noonari, A. A., Mahar, R. B., Sahito, A. R., & Brohi, K. M. (2019). Anaerobic co-digestion of canola straw and banana plant wastes with buffalo dung: Effect of Fe3O4 nanoparticles on methane yield. Renewable Energy, 133, 1046-1054. https://doi.org/10.1016/J.RENENE.2018.10.113
  41. Nosratpour, M. J., Karimi, K., & Sadeghi, M. (2018). Improvement of ethanol and biogas production from sugarcane bagasse using sodium alkaline pre-treatments. Journal of Environmental Management, 226, 329-339. https://doi.org/10.1016/J.JENVMAN.2018.08.058
  42. Nurk, L., Graβ, R., Pekrun, C., & Wachendorf, M. (2017). Methane yield and feed quality parameters of mixed silages from maize (Zea mays L.) and common bean (Phaseolus vulgaris L.). Bioenergy Research, 10(1), 64-73. https://doi.org/10.1007/s12155-016-9779-2
  43. Nzila, C., Dewulf, J., Spanjers, H., Kiriamiti, H., & van Langenhove, H. (2010). Biowaste energy potential in Kenya. Renewable Energy, 35(12), 2698-2704. https://doi.org/10.1016/j.renene.2010.04.016
  44. Odales, L., López, E., López, L. M., Jiménez, J., & Barrera, E. L. (2020). Biofertilizer potential of digestates from small-scale biogas plants in the Cuban context. Revista de Ciencias Agrícolas, 37(2), 14-26. https://doi.org/10.22267/rcia.203702.134
  45. ONEI. (2019a). Indicadores seleccionados. Oficina Nacional de Estadística e Información, Republica de Cuba. http://www.onei.gob.cu/
  46. ONEI. (2019b). Agricultura, Ganaderia, Silvicultura y Pesca. Oficina Nacional de Estadistica e Información de la republica de Cuba. http://www.onei.gob.cu/
  47. Pazmiño-Hernandez, M., Moreira, C. M., & Pullammanappallil, P. (2019). Feasibility assessment of waste banana peduncle as feedstock for biofuel production. Biofuels, 10(4), 473-484. https://doi.org/10.1080/17597269.2017.1323321
  48. Petersson, A., Thomsen, M., Hauggaard-Nielsen, H., & Thomsen, A. (2007). Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean. Biomass and Bioenergy, 31(11-12), 812-819. https://doi.org/10.1016/j.biombioe.2007.06.001
  49. Rice, E. W., Baird, R. B., & Eaton, A. D. (2017). Standard methods for the examination of water and wastewater (E. W. Rice (ed.); 23rd ed.). American Water Works Association. https://engage.awwa.org/PersonifyEbusiness/Store/Product-Details/productId/65266295
  50. Sajad Hashemi, S., Karimi, K., & Majid Karimi, A. (2019). Ethanolic ammonia pre-treatment for efficient biogas production from sugarcane bagasse. Fuel, 248, 196-204. https://doi.org/10.1016/J.FUEL.2019.03.080
  51. Samer, M., Abdelaziz, S., Refai, M., & Abdelsalam, E. (2020). Techno-economic assessment of dry fermentation in household biogas units through co-digestion of manure and agricultural crop residues in Egypt. Renewable Energy, 149, 226-234. https://doi.org/10.1016/J.RENENE.2019.12.058
  52. Silaen, M., Taylor, R., Bößner, S., Anger-Kraavi, A., Chewpreecha, U., Badinotti, A., & Takama, T. (2020). Lessons from Bali for small-scale biogas development in Indonesia. Environmental Innovation and Societal Transitions,35, 445-459. https://doi.org/10.1016/J.EIST.2019.09.003
  53. Stehel, V., Maroušková, A., Kolář, L., Strunecký, O., & Shreedhar, S. (2020). Advances in dry fermentation extends biowaste management possibilities. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(2), 212-218. https://doi.org/10.1080/15567036.2019.1587066
  54. Suárez, J., Martín, G., Cepero, L., Blanco, D., Sotolongo, J., Savran, V., Río, E., & Rivero, J. L. (2014). Procesos de innovación local en Agroenergía , orientados a la mitigación y adaptación al cambio climático en Cuba. Revista Cubana de Ciencia Agrícola, 48(1), 17-20. https://www.redalyc.org/pdf/1930/193030122006.pdf
  55. Suárez-Hernández, J., Quevedo-Benkí, J. R., Hernández-Aguilera, M. R., Peña-Alfonso, A., & González-Telles, G. (2018). Procesos de innovación en la producción local de alimentos y energía en municipios cubanos. Pastos y Forrajes, 41(4), 237-242. https://www.redalyc.org/journal/2691/269158220001/html/
  56. Suárez-Hernández, J., Sosa-Cáceres, R., Martínez-Labrada, Y., Curbelo Alonso, A., Figueredo-Rodríguez, T., & Cepero-Casas, L. (2018). Evaluation of the biogas production potential in Cuba. Pastos y Forrajes, 41(2), 79-85. https://payfo.ihatuey.cu/index.php?journal=pasto&page=article&op=view&path%5B%5D=2031
  57. Theuerl, S., Herrmann, C., Heiermann, M., Grundmann, P., Landwehr, N., Kreidenweis, U., & Prochnow, A. (2019). The future agricultural biogas plant in Germany: A vision. Energies, 12(3), 396. https://doi.org/10.3390/en12030396
  58. Vazquez, L., Majanne, Y., Castro, M., Luukkanen, J., Hohmeyer, O., Vilaragut, M., & Diaz, D. (2018). Energy system planning towards renewable power system: energy matrix change in Cuba by 2030. IFAC-PapersOnLine, 51(28), 522-527. https://doi.org/10.1016/j.ifacol.2018.11.756
  59. VDI 4630. (2016). Fermentation of organic materials - Characterization of the substrate, sampling, collection of material data, fermentation tests, 132. https://www.vdi.de/richtlinien/details/vdi-4630-vergaerung-organischer-stoffe-substratcharakterisierung-probenahme-stoffdatenerhebung-gaerversuche in German, and in English https://www.vdi.de/richtlinien/details/vdi-4630-fermentation-of-organic-materials-characterization-of-the-substrate-sampling-collection-of-material-data-fermentation-tests
  60. Villa Gomez, D. K., Becerra Castañeda, P., Montoya Rosales, J. de J., & González Rodríguez, L. M. (2019). Anaerobic digestion of bean straw applying a fungal pre-treatment and using cow manure as co-substrate. Environmental Technology, 41(22), 1-12. https://doi.org/10.1080/09593330.2019.1587004
  61. Weiland, P. (2007). 7th Meeting of IEA Bioenergy TASK 37. Country updates: Germany. www.iea-biogas.net/country-reports.html?file=files/daten.../2007...
  62. Weinrich, S., Schäfer, F., Bochmann, G., & Liebetrau, J. (2018). Value of batch tests for biogas potential analysis; method comparison and challenges of substrate and efficiency evaluation of biogas plants. In J. D. Murphy (Ed.), IEA Bioenergy (Vol. 10). IEA Bioenergy. https://www.ieabioenergy.com/wp-content/uploads/2019/11/IEA-Bioenergy_Task-37-Triennium-2016-2018-2.pdf
  63. Xu, N., Liu, S., Xin, F., Zhou, J., Jia, H., Xu, J., Jiang, M., & Dong, W. (2019). Biomethane production from lignocellulose: Biomass recalcitrance and its impacts on anaerobic digestion. Frontiers in Bioengineering and Biotechnology, 7, 1-12. https://doi.org/10.3389/fbioe.2019.00191
  64. Yasmin, N., & Grundmann, P. (2020). Home-cooked energy transitions: Women empowerment and biogas-based cooking technology in Pakistan. Energy Policy, 137, 111074. https://doi.org/10.1016/J.ENPOL.2019.111074
  65. Yu, Q., Liu, R., Li, K., & Ma, R. (2019). A review of crop straw pre-treatment methods for biogas
  66. production by anaerobic digestion in China. Renewable and Sustainable Energy Reviews, 107, 5

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

235 | 224




 

Creative Commons License Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2021 Ciencia & Tecnología Agropecuaria