Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio

Pectobacterium carotovorum: agente fitopatógeno causante de la pudrición blanda en la papa (Solanum tuberosum)

Universidad de Boyacá
Universidad de Boyacá
Universidad de Boyacá
antagonistas enfermedades poscosecha organismos patógenos quorum sensing técnicas de diagnóstico molecular

Resumen

La papa (Solanum tuberosum) es un tubérculo de importancia a nivel mundial; es el cuarto cultivo de interés agronómico en términos de producción y área cultivada después del arroz (Oryza sativa), el maíz (Zea mays) y el trigo (Triticum aestivum). Pectobacterium carotovorum es un agente fitopatógeno de la papa que causa la podredumbre blanda del tubérculo, y es considerada como la enfermedad poscosecha más importante, pues genera grandes pérdidas económicas a nivel del almacenamiento. El presente documento pretende dar un esbozo de la biología del patógeno, los métodos existentes para la detección de dicho agente, la descripción del quorum sensing como mecanismo de la regulación de la expresión génica de sus factores de virulencia, el mecanismo de acción del patógeno, el proceso infectivo y los métodos actuales de control.

Amaya Guerrero, A. P. ., M. E. . Beltrán Pineda, y N. C. Alfonso Vargas. «Pectobacterium Carotovorum: Agente fitopatógeno Causante De La pudrición Blanda En La Papa (Solanum Tuberosum)». Ciencia &Amp; Tecnología Agropecuaria, vol. 22, n.º 2, agosto de 2021, doi:10.21930/rcta.vol22_num2_art:1710.
  1. Abd El-Khair, H., & Haggag, K. H. (2007). Application of some bactericides and bioagents for controlling the soft rot disease in potato. Research Journal of Agriculture and Biological Sciences, 3(5), 463-473. http://www.aensiweb.net/AENSIWEB/rjabs/rjabs/2007/463-473.pdf
  2. Abisado, R. G., Benomar, S., Klaus, J. R., Dandekar, A., & Chandler, J. R. (2018). Bacterial quorum sensing and microbial community interactions. MBio, 9(3), e02331-17. http://doi.org/10.1128/mBio.02331-17
  3. Abu-Obeid, I., Khlaif, H., & Salem, N. (2018). Detection and Identification of Potato Soft Rot Pectobacterium carotovorum Subspecies carotovorum by PCR Analysis of 16S rDNA in Jordan Ibtihal. Agricultural Sciences, 9(5), 546556. https://doi.org/10.4236/as.2018.95037
  4. Acuña, I., & Araya, M. (2017). Pudricones blandas y pie negro. Instituto de Investigaciones Agropecuarias - INIA Remehue, 51, 2. http://www.inia.cl/wp-content/uploads/FichasTecnicasSanidadVegetal/Ficha%2051%20Pudriciones%20blandas%20y%20pie%20negro.pdf
  5. Al-Zomor, R., Khlaif, H., & Akash, M. (2013). Detection and Identification of Erwinia carotovora subsp. atroseptica (Van Hall , 1902) the causal agent of potato blackleg by RFLP-PCR. Jordan Journal of Agricultural Sciences, 9(2), 170-183. https://doi.org/10.12816/0001100
  6. Ansari, F. A., & Ahmad, I. (2018). Quorum sensing in phytopathogenic bacteria and its relevance in plant health. En V. C. Kalia (Ed.), Biotechnological Applications of Quorum Sensing Inhibitors (pp. 351-370). Springer. https://doi.org/10.1007/978-981-10-9026-4_17
  7. Aysan, Y., Karatas, A., & Cinar, O. (2003). Biological control of bacterial stem rot caused by Erwinia chrysanthemi on tomato. Crop Protection, 22(6), 807-811. https://doi.org/10.1016/S0261-2194(03)00030-9
  8. Azaiez, S., Slimene, I. B., Karkouch, I., Essid, R., Jallouli, S., Djebali, N., & Tabbene, O. (2018). Biological control of the soft rot bacterium Pectobacterium carotovorum by Bacillus amyloliquefaciens strain Ar10 producing glycolipid-like compounds. Microbiological Research, 217, 23-33. https://doi.org/10.1016/j.micres.2018.08.013
  9. Beaulieu, C., Khalil, M., Lerat, S., & Beaudoin, N. (2019). The plant pathogenic bacterium Streptomyces scabies degrades the aromatic components of potato periderm via the β-ketoadipate pathway. Frontiers in Microbiology, 10, 2795. https://doi.org/10.3389/fmicb.2019.02795
  10. Berne, C., Ducret, A., Gail G.H., & Brun, Y. V. (2015). Adhesins involved in attachment to abiotic surfaces by Gram- negative bacteria. Microbiology Spectrum, 3(4), 1-45. https://doi.org/10.1128/microbiolspec.MB-0018-2015
  11. Bhat, K. A., Bhat, N. A., Mohiddin, F. A., Sheikh, P. A., & Wani, A. (2012). Studies on pectinase activities of isolates of Erwinia carotovora and Rhizopus sp. causing soft rot in cabbage (Brassica oleracea var. capitata L.). African Journal of Agricultural Research, 7(45), 6062-6067. https://doi.org/10.5897/ajar12.1215
  12. Borba, N. (2008). La papa un alimento básico. Posibles impactos frente a la introducción de papa transgénica. Red de Acción en Plaguicidas y sus alternativas para América Latina (RAP-AL). http://www.rapaluruguay.org/transgenicos/Papa/Papa.pdf
  13. Burr, T., Barnard, A., Corbett, M., Pemberton, C., Simpson, N., & Salmond, G. (2006). Identification of the central quorum sensing regulator of virulence in the enteric phytopathogen, Erwinia carotovora: The VirR repressor. Molecular Microbiology, 59(1), 113-125. https://doi.org/10.1111/j.1365-2958.2005.04939.x
  14. Byers, J. T., Lucas, C., Salmond, G. P., & Welch, M. (2002). Nonenzymatic turnover of an Erwinia carotovora quorum-sensing signaling molecule. Journal of Bacteriology, 184(4), 1163-1171. http://doi.org/10.1128/jb.184.4.1163-1171.2002
  15. Byrne, B., Stack, E., Gilmartin, N., & O’Kennedy, R. (2009). Antibody-based sensors: Principles, problems and potential for detection of pathogens and associated toxins. Sensors, 9(6), 4407-4445. http://doi.org/10.3390/s90604407
  16. Caro-Castro, J., Mateo-Tuesta, C., Cisneros-Moscol, J., Galindo-Cabello, N., & León-Quispe, J. (2019). Aislamiento y selección de actinomicetos rizosféricos con actividad antagonista a fitopatógenos de la papa (Solanum tuberosum spp. andigena). Ecología Aplicada, 18(2), 101-109.
  17. Cladera-Olivera, F., Caron, G. R., Motta, A. S., Souto, A. A., & Brandelli, A. (2006). Bacteriocin-like substance inhibits potato soft rot caused by Erwinia carotovora. Canadian Journal of Microbiology, 52(6), 533-539. http://doi.org/10.1139/w05-159
  18. Corbett, M., Virtue, S., Bell, K., Birch, P., Burr, T. Hyman, L., & Salmond, G. (2005). Identification of a new quorum-sensing-controlled virulence factor in Erwinia carotovora subsp. atroseptica secreted via the type II targeting pathway. Molecular Plant-Microbe Interactions, 18(4), 334-342. https://doi.org/10.1094/MPMI-18-0334
  19. Corzo, M., & Quiñones, M. (2017). Identificación bioquímica, fisiológica y patogénica de aislados bacterianos asociados a la pudrición blanda y pierna negra en papa. Revista de Protección Vegetal, 32(3), 1-7. http://scielo.sld.cu/scielo.php?pid=S1010-27522017000300005&script=sci_arttext&tlng=pt
  20. Costa, A. B., Eloy, M., Cruz, L., Janse, J. D., & Oliveira, H. (2006). Studies on pectolytic Erwinia sp. in Portugal reveal unusual strains of E. carotovora subsp. atroseptica. Journal of Plant Pathology, 88(2), 161-169. https://agris.fao.org/agris-search/search.do?recordID=IT2007601827
  21. Cronin, D., Moënne-Loccoz, Y., Fenton, A., Dunne, C., Dowling, D. N., & O'Gara, F. (1997). Ecological interaction of a biocontrol Pseudomonas fluorescens strain producing 2, 4-diacetylphloroglucinol with the soft rot potato pathogen Erwinia carotovora subsp. atroseptica. FEMS Microbiology Ecology, 23(2), 95-106. https://doi.org/10.1111/j.1574-6941.1997.tb00394.x
  22. Culler, H., Couto, S., Higa, J., Ruiz, R., Yang, M., Bueris, V., … & Sircili, M. (2018). Role of SdiA on biofilm formation by atypical enteropathogenic Escherichia coli. Genes, 9(5), 1-17. https://doi.org/10.3390/genes9050253
  23. Czajkowski, R., Pérombelon, M. C. M., Veen, J. A., & Van Der Wolf, J. M. (2011). Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: A review. Plant Pathology, 60(6), 999-1013. https://doi.org/10.1111/j.1365-3059.2011.02470.x
  24. Czajkowski, R., Pérombelon, M. C. M., Jafra, S., Lojkowska, E., Potrykus, M., Van der Wolf, J. M., & Sledz, W. (2015). Detection, identification and differentiation of Pectobacterium and Dickeya species causing potato blackleg and tuber soft rot: A review. Annals of Applied Biology, 166(1), 18-38. https://doi.org/10.1111/aab.12166
  25. Czerwicka, M., Marszewksa, K., Bychowska, A., Dziadziusko, H., Brzozowski, K., Lojkowska, E., & Kaczynski, Z. (2011). Chemical structure of the O-polysaccharide isolated from Pectobacterium atrosepticum SCRI 1039. Carbohydrate Research, 346(18), 2978-2981. doi: https://doi.org/10.1016/j.carres.2011.10.026
  26. Dadaşoğlu, F., & Kotan, R. (2017). Identification and characterization of Pectobacterium carotovorum. Journal of Animal and Plant Sciences, 27(2), 647-654. http://www.thejaps.org.pk/docs/v-27-2/36.pdf
  27. De Boer, S. H., Maher, E. A., & Kelman, A. (1986). Serogroups of Erwinia carotovora involved in systemic infection of potato plants and infestation of progeny tubers. American Potato Journal, 63(1), 1-11. https://doi.org/10.1007/BF02855294
  28. De Boer, S. H., & Ward, L. J. (1995). PCR detection of Erwinia carotovora subsp. atroseptica associated with potato tissue. Phytopathology, 85(29), 854-858. https://doi.org/10.1094/Phyto-85-854
  29. De Lacy Costello, B. P. J., Ewen, R. J., Gunson, H. E., Ratcliffe, N. M., & Spencer- Phillips, P. T. N. (2000). The development of a sensor system for the early detection of soft rot in stored potato tubers. Measurement Science and Technology, 11(12), 1685. https://doi.org/10.1088/0957-0233/11/12/305
  30. Dees, M. W., & Wanner, L. A. (2012). In search of better management of potato common scab. Potato Research, 55, 249-268. https://doi.org/10.1007/s11540-012-9206-9
  31. Del Puerto Rodríguez, A. M., Suárez Tamayo, S., & Palacio Estrada, D. E. (2014). Efectos de los plaguicidas sobre el ambiente y la salud. Revista Cubana de Higiene y Epidemiologia, 52(3), 372-387. http://scielo.sld.cu/pdf/hie/v52n3/hig10314.pdf
  32. Devaux, A., Andrade-Piedra, J. L., Ordinola, M., Velasco, C., & Hareau, G. (2011). La papa y la seguridad alimentaria en la región andina: Situación actual y desafíos para la innovación. En J. Andrade, J. Reinoso, S. Ayala (Eds.), Memorias del 4.º Congreso Ecuatoriano de la Papa (pp. 10-14). Guaranda (Ecuador) 28-30 jun 2011. https://cgspace.cgiar.org/handle/10568/67650
  33. Diallo, S., Latour, X., Groboillot, A., Smadja, B., Copin, P., Orange, N., & Chevalier, S. (2009). Simultaneous and selective detection of two major soft rot pathogens of potato: Pectobacterium atrosepticum (Erwinia carotovora subsp. atrosepticum) and Dickeya spp. (Erwinia chrysanthemi). European Journal of Plant Pathology, 125(2), 349-354. https://doi.org/10.1007/s10658-009-9477-4
  34. Diallo, S., Crépin, A., Barbey, C., Orange, N., Burini, J. F., & Latour, X. (2011). Mechanisms and recent advances in biological control mediated through the potato rhizosphere. FEMS Microbiology Ecology, 75(3), 351-364. http://doi.org/10.1111/j.1574-6941.2010.01023.x
  35. Doolotkeldieva, T., Bobusheva, S., & Suleymankisi, A. (2016). Biological Control of Erwinia carotovora ssp. carotovora by Streptomyces Species. Advances in Microbiology, 6(2), 104-114. https://doi.org/10.4236/aim.2016.62011
  36. Douches, D. S., Maas, D., Jastrzebski, K., & Chase, R. W. (1996). Assessment of Potato Breeding Progress in the USA over the Last Century. Crop Science, 36(6), 1544-1552. http://doi.org/10.2135/cropsci1996.0011183X003600060024x
  37. Duarte, V., De Boer, S. H., Ward, L. J., & De oliveira, A. (2004). Characterization of atypical Erwinia carotovora strains causing blackleg of potato in Brazil. Journal of Applied Microbiology, 96(3), 535-545. https://doi.org/10.1111/j.1365-2672.2004.02173.x
  38. Evans, T. J., Ind, A., Komitopoulou, E., & Salmond, G. P. C. (2010). Phage-selected lipopolysaccharide mutants of Pectobacterium atrosepticum exhibit different impacts on virulence. Journal of Applied Microbiology, 109(2), 505-514. https://doi.org/10.1111/j.1365-2672.2010.04669.x
  39. Fang, Y., & Ramasamy, R. (2015). Current and prospective methods for plant disease detection. Biosensors, 5(3), 537-561. https://doi.org/10.3390/bios5030537
  40. Faquihi, H., Mhand, R. A., Ennaji, M., Benbouaza, A., & Achbani, E. (2015). Aureobasidium pullulans (De Bary) G. Arnaud, a biological control against soft rot disease in potato caused by Pectobacterium carotovorum. International Journal of Science and Research, 3(10), 1779-1786. https://pdfs.semanticscholar.org/a594/42dbb037f98ee584cbd6ff8827793a56a49d.pdf
  41. Flores-Magdaleno, H., Flores-Gallardo, H., & Ojeda-Bustamante, W. (2014). Phenological prediction of potato crop by means of thermal time. Revista Fitotecnia Mexicana, 37(2), 149-157. http://www.scielo.org.mx/pdf/rfm/v37n2/v37n2a6.pdf
  42. Fraaije, B. A., Appels, M., De Boer, S. H., Van Vuurde, J. W. L., & Van den Bulk, R. W. (1997). Detection of soft rot Erwinia spp. on seed potatoes: Conductimetry in comparison with dilution plating, PCR and serological assays. European Journal of Plant Pathology, 103(2), 183-193. https://doi.org/10.1023/A:1008684428898
  43. Franco, Y., & Stefanova, M. (2008). Determinación de actividades enzimáticas implicadas en la virulencia de cepas de Pectobacterium carotovorum subsp. carotovorum y Dickeya chrysanthemi aisladas de papa. Agro Sur, 36(3), 130-136. https://doi.org/10.4206/agrosur.2008.v36n3-02
  44. Frechon, D., Exbrayat, P., Helias, V., Hyman, L. J., Jouan, B., Llop, P., & Bertheau, Y. (1998). Evaluation of a PCR kit for the detection of Erwinia carotovora subsp. atroseptica on potato tubers. Potato Research, 41(2), 163-173. https://doi.org/10.1007/BF02358439
  45. Fucikovsky, L., & Villarreal, L. (1991). Supervivencia y dispersión de Erwinia caratovora subsp. atroseptica y E. carotovora subsp. carotovora en el valle de Toluca, México. Revista Latinoamericana de la Papa, 4(1), 52-61. http://papaslatinas.org/index.php/rev-alap/article/view/43
  46. Fukuoka, S., Brandenburg, K., Müller, M., Lindner, B., Koch, M., & Seydel, U. (2001). Physico-chemical analysis of lipid A fractions of lipopolysaccharide from Erwinia carotovora in relation to bioactivity. Biochimica et Biophysica Acta - Biomembranes, 1510(1-2), 185-197. https://doi.org/10.1016/S0005-2736(00)00347-3.
  47. Gasparyan, V. K., & Bazukyan, I. L. (2013). Lectin sensitized anisotropic silver nanoparticles for detection of some bacteria. Analytica Chimica Acta, 766, 83-87. https://doi.org/10.1016/j.aca.2012.12.015
  48. Gerayeli, N., & Baghaee S. (2018). Evaluation of the antagonistic potential of Bacillus strains against Pectobacterium carotovorum subsp. carotovorum and their role in the induction of resistance to potato soft rot infection. European Journal of Plant Pathology, 150(4), 1049-1063. https://doi.org/10.1007/s10658-017-1344-0
  49. Gorris, M., Alarcon, B., Lopez, M., & Cambra, M. (1994). Characterization of monoclonal antibodies specific for Erwinia carotovora subsp. atroseptica and comparison of serological methods for its sensitive detection on potato tubers. Applied and Environmental Microbiology, 60(6), 2076-2085. https://doi.org/10.1128/aem.60.6.2076-2085.1994
  50. Gosch, C., Gottsberger, R. A., Stich, K., & Fischer, T. C. (2012). Blue EaLAMP—a specific and sensitive method for visual detection of genomic Erwinia amylovora DNA. European Journal of Plant Pathology, 134(4), 835-845. http://doi.org/10.1007/s10658-012-0059-5
  51. Gurney, J., Azimi, S., McNally, A., Brown, S. P., & Diggle, S. P. (2018). Combinatorial quorum sensing in Pseudomonas aeruginosa allows for novel cheating strategies. BioRxiv, 313502. https://doi.org/10.1101/313502
  52. Hajian-Maleki, H., Baghaee-Ravari, S., Moghaddam, M. (2019). Efficiency of essential oils against Pectobacterium carotovorum subsp. carotovorum causing potato soft rot and their possible application as coatings in storage. Postharvest Biology and Technology, 156(2), 110928. https://doi.org/10.1016/j.postharvbio.2019.06.002
  53. Hamel, C., Chevalier, S., Dé, E., Orange, N., & Molle, G. (2001). Isolation and characterisation of the major outer membrane protein of Erwinia carotovora. Biochimica et Biophysica Acta - Biomembranes, 1515(1), 12-22. https://doi.org/10.1016/S0005-2736(01)00387-X
  54. Hauben, L., & Swings, J. (2015). Erwinia. En M. E. Trujillo, S. Dedysh, P. DeVos, B. Hedlund, P. Kämpfer, F. A. Rainey & W. B. Whitman (Eds.), Bergey's Manual of Systematics of Archaea and Bacteria. https://doi.org/10.1002/9781118960608.gbm01146
  55. Hellinga, H., Durham, N. C., Looger, L. L., & Madison, A. L. (2013). United States Patent- Biosensor, 2(12), 4-8. https://patentimages.storage.googleapis.com/df/b8/d3/d56dfd2001af45/US9625458.pdf
  56. Henke, J. M., & Bassler, B. L. (2004). Bacterial social engagements. Trends in Cell Biology, 14 (11), 648-656. https://doi.org/10.1016/j.tcb.2004.09.012
  57. Instituto Colombiano Agropecuario (ICA). (2020). Registros de venta de plaguicidas químicos de uso agrícola cancelados. https://www.ica.gov.co/areas/agricola/servicios/regulacion-y-control-de-plaguicidas-quimicos/registro-de-venta-pqua-cancelados.aspx.
  58. Jafra, S., Przysowa, J., Czajkowski, R., Michta, A., Garbeva, P., & Van der Wolf, J. M. (2006). Detection and characterization of bacteria from the potato rhizosphere degrading N-acyl-homoserine lactone. Canadian Journal of Microbiology, 52(10), 1006-1015. https://doi.org/10.1139/w06-062
  59. Jemielita, M., Wingreen, S., & Bassler, B. L. (2018). Quorum sensing controls Vibrio cholerae multicellular aggregate formation. Elife, 7, e42057. http://doi.org/10.7554/eLife.42057
  60. Jones, D. L., & Darrah, P. R. (1994). Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant and Soil, 166(2), 247-257. https://doi.org/10.1007/BF00008338
  61. Kang, H. W., Kwon, S. W., & Go, S. J. (2003). PCR-based specific and sensitive detection of Pectobacterium carotovorum ssp. carotovorum by primers generated from a URP-PCR fingerprinting-derived polymorphic band. Plant Pathology, 52(2), 127-133. https://doi.org/10.1046/j.1365-3059.2003.00822.x
  62. Kastelein, P., Schepel, E. G., Mulder, A., Turkensteen, L. J., & Van Vuurde, J. W. L. (1999). Preliminary selection of antagonists of Erwinia carotovora subsp. atroseptica (Van Hall) Dye for application during green crop lifting of seed potato tubers. Potato research, 42(1), 161-171. https://doi.org/10.1007/BF02358406
  63. Kazemi-Pour, N., Condemine, G., & Hugouvieux-Cotte-Pattat, N. (2004). The secretome of the plant pathogenic bacterium Erwinia chrysanthemi. Proteomics, 4(10), 3177-3186. http://doi.org/10.1002/pmic.200300814
  64. Khater, M., De la Escosura-Muñiz, Al., & Merkoçi, A. (2017). Biosensors for plant pathogen detection. Biosensors and Bioelectronics, 93(2017), 72-86. https://doi.org/10.1016/j.bios.2016.09.091
  65. Khosro, I., Kazemi, S., Zarrabi, S., & Reza, M. (2012). Antagonism of Bacillus species against Xanthomonas campestris pv. campestris and Pectobacterium carotovorum subsp. carotovorum. African Journal of Microbiology Research, 6(7), 1615-1620. https://doi.org/10.5897/ajmr12.075
  66. Laatu, M., & Condemine, G. (2003). Rhamnogalacturonate lyase RhiE is secreted by the out system in Erwinia chrysanthemi. Journal of bacteriology, 185(5), 1642-1649. http://doi.org/10.1128/JB.185.5.1642-1649.2003
  67. Laurila, J., Hannukkala, A., Nykyri, J., Pasanen, M., Hélias, V., Garlant, L., & Pirhonen, M. (2010). Symptoms and yield reduction caused by Dickeya spp. strains isolated from potato and river water in Finland. European Journal of Plant Pathology, 126(2), 249-262. https://doi.org/10.1007/s10658-009-9537-9
  68. Lee, J., Kim, S., & Park, T. H. (2017). Diversity of bacteriophages infecting Pectobacterium from potato fields. Journal of Plant Pathology, 99(2), 453-460. https://doi.org/10.4454/jpp.v99i2.3880
  69. Maldonado, N., Robledo, C., & Robledo, J. (2018). La espectrometría de masas MALDI-TOF en el laboratorio de microbiología clínica. Infectio, 22(1), 35-45. http://dx.doi.org/10.22354/in.v0i0.703
  70. Mattinen, L., Tshuikina, M., Mäe, A., & Pirhonen, M. (2004). Identification and characterization of Nip, necrosis-inducing virulence protein of Erwinia carotovora subsp. carotovora. Molecular Plant-Microbe Interactions, 17(12), 1366-1375. http://doi.org/10.1094/MPMI.2004.17.12.1366
  71. Matsumoto, H., Jitareerat, P., Baba, Y., & Tsuyumu, S. (2003). Comparative study of regulatory mechanisms for pectinase production by Erwinia carotovora subsp. carotovora and Erwinia chrysanthemi. Molecular Plant-Microbe Interactions, 16(3), 226-237. https://doi.org/10.1094/MPMI.2003.16.3.226
  72. McCready, R., Paczkowski, E., Henke, R., & Bassler, L. (2019). Structural determinants driving homoserine lactone ligand selection in the Pseudomonas aeruginosa LasR quorum-sensing receptor. Proceedings of the National Academy of Sciences, 116(1), 245-254. https://doi.org/10.1073/pnas.1817239116
  73. Méndez, P., Inostroza, J., & Carillanca, C. R. (2009). Manual de papa para la Araucanía: Manejo de cultivo, enfermedades y almacenaje. Instituto de Investigaciones Agropecuarias. http://biblioteca.inia.cl/medios/biblioteca/boletines/NR36493.pdf
  74. Miles, L. A., Lopera, C. A., González, S., Cepero de García, M. C., Franco, A. E., & Restrepo, S. (2012). Exploring the biocontrol potential of fungal endophytes from an Andean Colombian Paramo ecosystem. BioControl, 57(5), 697-710. https://doi.org/10.1007/s10526-012-9442-6
  75. Miller, A., Beed, D., & Harmon, C. L. (2009). Plant disease diagnostic capabilities and networks. Annual Review of Phytopathology, 47, 15-38. https://doi.org/10.1146/annurev-phyto-080508-081743
  76. Mills, A. A. S., Platt, H. W., & Hurta, R. A. (2006). Sensitivity of Erwinia sp. to salt compounds in vitro and their effect on the development of soft rot in potato tubers in storage. Postharvest Biology and Technology, 41(2), 208-214. https://doi.org/10.1016/j.postharvbio.2006.03.015
  77. Montesinos, E. (2003). Development, registration and commercialization of microbial pesticides for plant protection. International microbiology, 6(4), 245-52. http://doi.org/10.1007/s10123-003-0144-x
  78. Muzira, R., Basamba, T., & Tenywa, J. S. (2018). Assessment of Soil Nutrients Limiting Sustainable Potato Production in the Highlands of South-Western Uganda. Open Access Library Journal, 5(3), 1-8. http://doi.org/10.4236/oalib.1104440
  79. Ng, L., Watve, S., Barrasso, K., Jung, A., Davis, J., Hawver, L. A., Khataokar, A., Palaganas, R. G., Neiditch, M. B., & Perez, L. J. (2019). Ethanolamine regulates CqsR quorum-sensing signaling in Vibrio cholerae. The Preprint Server for Biology - bioRxiv, 589390. https://doi.org/10.1101/589390
  80. Nikitin, M., Statsyuk, N. V., Frantsuzov, P. A., Dzhavakhiya, V. G., & Golikov, A. G. (2018). Matrix approach to the simultaneous detection of multiple potato pathogens by real‐time PCR. Journal of Applied Microbiology, 124(3), 797-809. https://doi.org/10.1111/jam.13686
  81. Ojeda‐Bustamante, W., Sifuentes‐Ibarra, E., Slack, D. C., & Carrillo, M. (2004). Generalization of irrigation scheduling parameters using the growing degree days concept: application to a potato crop. Irrigation and Drain, 53(3), 251-261. https://doi.org/10.1002/ird.134
  82. Pemberton, C. L., Whitehead, N. A., Sebaihia, M., Bell, K. S., Hyman, L. J., Harris, S. J., & Salmond, G. P. C. (2005). Novel quorum-sensing-controlled genes in Erwinia carotovora subsp. carotovora: Identification of a fungal elicitor homologue in a soft-rotting bacterium. Molecular Plant-Microbe Interactions, 18(4), 343-353. https://doi.org/10.1094/MPMI-18-0343
  83. Pérez-Rojas, F., León-Quispe, J., & Galindo-Cabello, N. (2015). Actinomicetos aislados del compost y su actividad antagonista a fitopatógenos de la papa (Solanum tuberosum spp. andigena Hawkes). Revista mexicana de fitopatología, 33(2), 116-139
  84. Perombelon, M., Hyman, L., Wallace, A., Lopez, M., Cambra, M., & Gorris, M. (1995). Journal of Applied Bacteriology, 78(4), 437-444. http://doi.org/10.1111/j.1365-2672.1995.tb03431.x
  85. Perombelon, M. (2002). Potato diseases caused by soft rot erwinias: An overview of pathogenesis. Plant Pathology, 51(1), 1-12. https://doi.org/10.1046/j.0032-0862.2001.Shorttitle.doc.x
  86. Phokum, C., Jitareerat, P., Photchanachai, S., & Cheevadhanarak, S. (2006). Detection and classification of soft rot Erwinia of vegetables in Thailand by DNA polymerase chain reaction. Acta Horticulturae, 712, 917-926. http://doi.org/10.17660/ActaHortic.2006.712.12
  87. Piepenburg, O., Williams, C. H., Stemple, D. L., & Armes, N. A. (2006). DNA detection using recombination proteins. PLoSbiology, 4(7), e204. http://doi.org/10.1371/journal.pbio.0040204
  88. Põllumaa, L., Alamäe, T., & Mäe, A. (2012). Quorum sensing and expression of virulence in Pectobacteria. Sensors, 12(3), 3327-3349. http://doi.org/10.3390/s120303327
  89. Potrykus, M., Sledz, W., Golanowska, M., Slawiak, M., Binek, A., Motyka, A., Zoledowska, S., Czajkowski, R., & Lojkowska, E. (2014). Simultaneous detection of major blackleg and soft rot bacterial pathogens in potato by multiplex polymerase chain reaction. Annals of Applied Biology, 165(3), 474-487. https://doi.org/10.1111/aab.12156.
  90. Procolombia. (2020). Inversión del sector agroquímico. https://www.inviertaencolombia.com.co/sectores/manufacturas/agroquimicos.html
  91. Rodríguez, L. E. (2010). Origen y evolución de la papa cultivada. Una revisión. Agronomía Colombiana, 28(1), 9-17. https://revistas.unal.edu.co/index.php/agrocol/article/view/17588/37339
  92. Šalplachta, J., Kubesová, A., Horký, J., Matoušková, H., Tesařová, M., & Horká, M. (2015). Characterization of Dickeya and Pectobacterium species by capillary electrophoretic techniques and MALDI-TOF MS. Analytical and Bioanalytical Chemistry, 407(25), 7625-7635. http://doi.org/10.1007/s00216-015-8920-y
  93. Scala, V., Pucci, N., & Loreti, S. (2018). The diagnosis of plant pathogenic bacteria: A state of art. Frontiers in Bioscience - Elite, 10(3), 449-460. https://doi.org/10.2741/e832
  94. Scott, R. I., Chard, J. M., Hocart, M. J., Lennard, J. H., & Graham, D. C. (1996). Penetration of potato tuber lenticels by bacteria in relation to biological control of blackleg disease. Potato Research, 39(3), 333-344. https://doi.org/10.1007/BF02357937
  95. Senchenkova, S., Knirel, Y., Shashkov, A., Ahmed, M., Mavridis, A., & Rudolph, K. (2003). Structure of the O-polysaccharide of Erwinia carotovora ssp. carotovora GSPB 436. Carbohydrate Research, 338(19), 2025-2027. https://doi.org/10.1016/S0008-6215(03)00326-4
  96. Sharga, B. M., & Lyon, G. D. (1998). Bacillus subtilis BS 107 as an antagonist of potato blackleg and soft rot bacteria. Canadian Journal of Microbiology, 44(8), 777-783. https://doi.org/10.1139/w98-064
  97. Siegel, J. (1987). Language contact in a plantation environment: A sociolinguistic history of Fiji. Cambridge University Press.
  98. Smadja, B., Latour, X., Faure, D., Chevalier, S., Dessaux, Y., & Orange, N. (2004). Involvement of N-acylhomoserine lactones throughout plant infection by Erwinia carotovora subsp. atroseptica (Pectobacterium atrosepticum). Molecular Plant-Microbe Interactions, 17(11), 1269-1278. https://doi.org/10.1094/MPMI.2004.17.11.1269
  99. Smith, C., & Bartz, J. A. (1990). Variation in the Pathogenicity and Aggresssiveness of Strains of Erwinia carotovora subsp. carotovora Isolated from Different Hosts. Plant Disease, 75, 505-509. http://doi.org/10.1094/PD-74-0505
  100. Strobel, G., Daisy, B., Castillo, U., & Harper, J. (2004). Natural products from endophytic microorganisms. Journal of Natural Products, 67(2), 257-268. http://doi.org/10.1021/np030397v
  101. Toth, I. K., Avrova, A. O., & Hyman, L. J. (2001). Rapid identification and differentiation of the soft rot Erwinias using 16S_23S intergenic transcribed spacer (ITS)‐PCR and RFLP analyses. Applied and Environmental Microbiology, 67(9), 4070-4076. http://doi.org/10.1128/aem.67.9.4070-4076.2001
  102. Toth, I. K., Bell, K. S., Holeva, M. C., & Birch, P. R. J. (2003). Soft rot Erwiniae: From genes to genomes. Molecular Plant Pathology, 4(1), 17-30. http://doi.org/10.1046/j.1364-3703.2003.00149.x
  103. Trias, R., Baneras, E., Montesinos, E., & Badosa, E. (2008). Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. Introduction Microbial, 11(4), 231-236. http://doi.org/10.2436/20.1501.01.66
  104. Valente, S., Nadal-Jimenez, P., Carvalho, F., Vieira, J., & Xavier, K. B. (2017). Signal integration in quorum sensing enables cross-species induction of virulence in Pectobacterium wasabiae. MBio, 8(3), e00398-17. http://doi.org/10.1128/mBio.00398-17
  105. Van der Merwe, J. J., Coutinho, T. A., Korsten, L., & Van der Waals, J. E. (2010). Pectobacterium carotovorum subsp. brasiliensis causing blackleg on potatoes in South Africa. European Journal of Plant Pathology, 126(2), 175-185. https://doi.org/10.1007/s10658-009-9531-2
  106. Vega, J. (mayo 9 de 2018). Los agroquímicos son un mercado que mueve cerca de US$600 millones al año. Agronegocios. https://www.agronegocios.co/agricultura/los-agroquimicos-son-un-mercado-que-mueve-cerca-de-600-millones-al-ano-2723848
  107. Vincent, M., Xu, Y., & Kong, H. (2004). Helicase‐dependent isothermal DNA amplification. EMBO Reports, 5(8), 795-800. http://doi.org/10.1038/sj.embor.7400200
  108. Visick, K. L., & McFall-Ngai, M. J. (2000). An exclusive contract: specificity in the Vibrio fischeri - Euprymna scolopes partnership. Journal of Bacteriology, 182(7), 1779-1787. http://doi.org/10.1128/jb.182.7.1779-1787.2000
  109. Watson, W. T., Minogue, T. D., Val, D. L., Von Bodman, S. B., & Churchill, M. E. (2002). Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. Molecular Cell, 9(3), 685-694. http://doi.org/10.1016/s1097-2765(02)00480-x
  110. Whitehead, N., Byers, J., Commander, P., Corbeth, M. J., Coulthurst, S. J., Everson, L., & Salmond, G. P. (2002). The regulation of virulence in phytopathogenic Erwinia species: Quorum sensing, anti-biotics and ecological considerations. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 81(1-4), 223-231. http://doi.org/10.1023/A:1020570802717
  111. Williams-Nguyen J., Brett J., Bartelt-Hunt S., Boxall A.B., Durso L.M., McLain J.E., et al. (2016). Antibiotics and antibiotic resistance in agroecosystems. Journal Environmental Quality, 45, 394-406. https://core.ac.uk/download/pdf/42621573.pdf
  112. Yasuhara‐Bell, J., Marrero, G., De Silva, A., & Alvarez, A. M. (2016). Specific detection of Pectobacterium carotovorum by loop‐mediated isothermal amplification. Molecular Plant Pathology, 17(9), 1499-1505. http://doi.org/10.1111/mpp.12378
  113. Zanoli, L. M., & Spoto, G. (2013). Isothermal amplification methods for the detection of nucleic acids in microfluidic devices. Biosensors, 3(1), 18-43. http://doi.org/10.3390/bios3010018
  114. Zhang, Y., & Tanner, N. A. (2017). Isothermal amplification of long, discrete DNA fragments facilitated by single-stranded binding protein. Scientific Reports, 7(1), 84-97. http://doi.org/10.1038/s41598-017-09063-x

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

1315 | 767




 

Creative Commons License

La Revista proporciona acceso abierto y libre a todos sus contenidos; sin barreras legales, económicas o tecnológicas, para lo cual define la siguiente licencia de publicación y uso de los artículos: Licencia de publicación: Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) Texto completo:https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es