Contenido principal del artículo

Dentro de los cultivos ancestrales subutilizados que tienen un potencial agroindustrial está el ramón (Brosimum alicastrum), ya que su semilla es fuente
de proteína, almidón y fibra. En este trabajo se investigó el efecto de incorporar harina de semilla de ramón en diferentes proporciones, evaluando su efecto sobre la textura, el color, la aceptación y el contenido de fibra dietética total de tortillas y de pan de caja. Las masas de harina de maíz aumentaron su adhesividad al incorporar harina de semilla de ramón (de 3,97 a 4,96 N), además de resultar menos duras, pero más cohesivas. Las tortillas fueron a su
vez más dúctiles al ser más deformables (de 3,73 a 4,84 N). Las menores diferencias de color con respecto al control fueron observadas al incorporar 10 % de harina de semilla de ramón (δE = 7,77 y 22,95 para tortilla y pan de caja, respectivamente). El contenido de fibra dietética total aumentó en un 26 % en tortillas y 54 % en pan de caja al utilizar 10 % de harina de semilla de ramón. En contraste, para el pan de caja sí hubo diferencias detectables por los consumidores, sobre todo en el color desarrollado. Los resultados indican que se puede utilizar un 10 % de harina de ramón en tortillas o panes sin afectar las propiedades de textura; además, a pesar de los cambios en la coloración, no son considerados importantes por los consumidores, y su uso incrementa el contenido de fibra dietética total.

coloración, estructura, fibra, maíz, trigo
Domínguez-Zarate, P. A., García-Martínez, I., Güemes-Vera, N., & Totosaus, A. (2019). Textura, color y aceptación sensorial de tortillas y pan producidos con harina de ramón (Brosimum alicastrum) para incrementar la fibra dietética total. Ciencia & Tecnología Agropecuaria, 20(3), 699-719. https://doi.org/10.21930/rcta.vol20_num3_art:1590

AACC. (2014). Method 10-05.01. Guidelines for measurement of volume by rapeseed displacement. Saint Paul, Minnesota, EE.UU.: AACC International.

Acosta-Estrada, B. A., Lazo-Vélez, M. A., Nava-Valdez, Y., Gutiérrez-Uribe, J. A., & Serna-Saldívar, S. O. (2014). Improvement of dietary fiber, ferulic acid and calcium contents in pan bread enriched with nejayote food additive from white maize (Zea mays). Journal of Cereal Science, 60, 264-269. https://doi.org/10.1016/j.jcs.2014.04.006

Angioloni, A., & Collar, C. (2009). Bread crumb quality assessment: A plural physical approach. European Food Research and Technology, 229, 21-30. https://doi.org/10.1007/s00217-009-1022-3

AOAC. (1999). AOAC Official Method 992.16 Total dietary fiber enzymatic-gravimetric method. Official Methods of Analysis of AOAC International. 16th Edition. Washington D.C., EE.UU.: AOAC International.

Beccerica, S., de la Torre, M. A., Sánchez, H. D., & Osella, C. A. (2011). Use of oat bran in bread: fiber and oil enrichment and technological performance. Food and Nutrition Science, 2, 553-559. https://doi.org/10.4236/fns.2011.26079

Belghith Fendri, L., Chaari, F., Maaloul, M., Kallel, F., Abdelkafi, L., Ellouz Chaabouni, S., & Ghribi-Aydi, D. (2016). Wheat bread enrichment by pea and broad bean pods fibers: Effect on dough rheology and bread quality. LWT-Food Science and Technology, 73, 584-591. https://doi.org/10.1016/j.lwt.2016.06.070

Bourne, M. C. (1978). Texture Profile Analysis. Food Technology, 32(7), 62-66, 72.

Campus-Baypoli, O. N, Rosas-Burgos, E. C., Torres-Chávez, P. I., Ramírez-Wong, B., & Serna-Saldívar, S. O. (1999). Physiochemical changes of starch during maize tortilla production. Starch/Stärke, 51, 173-177. https://doi.org/10.1002/(SICI)1521-379X(199905)51:5<173::AID-STAR173>3.0.CO;2-B

Castro-González, A., Alayón-Gamboa, J. A., Ayala-Burgos, A., & Ramírez-Avilés, L. (2008). Effects of Brosimum alicastrum and mixtures on voluntary intake, nutrient digestibility and nitrogen balance in sheep fed tropical pastures. Animal Feed Science and Technology, 141, 246-258. https://doi.org/10.1016/j.anifeedsci.2007.06.033

Cho, S. (2009). Functional and dietary fibers: an introduction. En S. S. Cho, & P. Samuel (Eds.), Fiber Ingredients Food Applications and Health Benefits (pp. 1-6). Boca Raton, EE.UU.: CRC Press.

Chuck-Hernández, C., Pérez-Carrillo, E., Soria-Hernández, C., & Serna-Saldívar, S. O. (2015). Functionality and organoleptic properties of maize tortillas enriched with five different soybean proteins. Cereal Chemistry, 92, 341-349. https://doi.org/10.1094/CCHEM-07-14-0154-R

Clark, R., & Johnson, S. (2002). Sensory acceptability of foods with added lupin (Lupinus angustifolius) kernel fiber using pre-set criteria. Journal of Food Science, 67, 356-362. https://doi.org/10.1111/j.1365-2621.2002.tb11410.x

Cuevas-Martínez, D., Moreno-Ramos, C., Martínez-Manrique, E., Moreno-Martínez, E., & Méndez-Albores, A. (2010). Nutrition and texture evaluation of maize-white common bean nixtamalized tortillas. Interciencia, 35, 828-832.

Der, G., & Everitt, B. S. (2008). A Handbook of Statistical Analyses using SAS, 3rd edition. (pp. 99-109). Londres, Inglaterra: Chapman & Hall/CRC.

Dussol, L., Elliott, M., Michelet, D., & Nondédéo, P. (2017). Ancient Maya sylviculture of breadnut (Brosimum alicastrum Sw.) and sapodilla (Manilkara zapota (L.) P. Royen) at Naachtun (Guatemala): A reconstruction based on charcoal analysis. Quaternary International, 457, 29-42. https://doi.org/10.1016/j.quaint.2016.10.014

Fechner, A., Scweiggert, U., Hasenkopf, K., & Jahreis, G. (2011). Lupine kernel fiber: Metabolic effects in human intervention studies and uses as supplement in wheat bread. En V.R. Preedy, R.R. Watson & V.B. Patel (Eds), Flour and Breads and their Fortification in Health and Disease Prevention (pp. 463-474). Londres, Inglaterra: Academic Press. https://doi.org/10.1016/B978-0-12-380886-8.10042-X

Flores-Farías, R., Martínez-Bustos, F., Salinas-Moreno, Y., Kil-Chang, Y., González-Hernández, J., & Ríos, E. (2000). Physicochemical and rheological characteristics of commercial nixtamalised Mexican maize flours for tortillas. Journal of the Science of Food and Agriculture, 80, 657-664. https://doi.org/10.1002/(SICI)1097-0010(20000501)80:6<657::AID-JSFA576>3.0.CO;2-J

Gámbaro, A., Varela, P., & Giménez, A. (2002). Textural quality of white pan bread by sensory and instrumental measurements. Journal of Texture Studies, 33, 401-413. https://doi.org/10.1111/j.1745-4603.2002.tb01356.x

Gasca-Mancera, J. C., & Casas-Alencáster, N. B. (2007). Addition of nixtamalized corn flour to fresh nixtamalized corn masa. effect on the textural properties of masa and tortilla. Revista Mexicana de Ingeniería Química, 6, 317-328.

Geera, B. P., Nelson, J. E., Souza, E., & Huber, K. C. (2006). Composition and properties of A- and B-type starch granules of wild-type, partial waxy, and waxy soft wheat. Cereal Chemistry, 83, 551-557. https://doi.org/10.1094/CC-83-0551

Gómez, M. H., Lee, J. K, McDonough, C. M., Waniska, R. D, & Rooney, L. W. (1992). Corn starch changes during tortilla and tortilla chip processing. Cereal Chemistry, 69, 275-279.

Güemes-Vera, N., Peña, R., Jiménez, C., Dávila, G.; & Calderón, G. (2008). Effective detoxification and decoloration of Lupinus mutabilis seed derivatives, and effect of these derivatives on bread quality and acceptance. Journal of the Science of Food and Agriculture, 88, 1135-1143. https://doi.org/10.1002/jsfa.3152

Hizukuri, S. (1985). Relationship between the distribution of the chain length of amylopectin and the crystalline structure of starch granules. Carbohydrate Research, 141, 295-306. https://doi.org/10.1016/S0008-6215(00)90461-0

Lander, T. A., & Monro, A. (2015). Conservation of Brosimum alicastrum, an underutilized crop and keystone forest tree species; a potential win-win for conservation and development in Latin America. Biodiversity and Conservation, 24, 1917-1930. https://doi.org/10.1007/s10531-015-0913-9

Lewis, B. A., Hall, M.B., & Van Soest, P. J. (2001). Interaction between human gut bacteria and dietary fiber substrates. En G.A. Spiller (Ed), Dietary Fiber in Human Nutrition, 3rd edition (pp. 271-276). Boca Raton, EE.UU.: CRC Press. https://doi.org/10.1201/9781420038514.ch4.7

Little, A. C. (1975). Off on a tangent. Journal of Food Science, 40, 410-411. https://doi.org/10.1111/j.1365-2621.1975.tb02213.x

Maningat, C. C., & Seib, P. A. (2010). Understanding the physicochemical and functional properties of wheat starch in various foods. Cereal Chemistry, 87, 305-314. https://doi.org/10.1094/CCHEM-87-4-0305

Mohammed, I., Ahmed, A. R., & Senge, B. (2012). Dough rheology and bread quality of wheat-chickpea flour blends. Industrial Crops and Products, 36, 196-202. https://doi.org/10.1016/j.indcrop.2011.09.006

Moo-Huchin, V.M., Cabrera-Sierra, M.J., Estrada-León, R.J., Ríos-Soberanis, C.R., Betancur-Ancona, D., Chel-Guerrero, L., Ortiz-Fernández, A., Estrada-Mota, I.A., &. Pérez-Pacheco, E. (2015). Determination of some physicochemical and rheological characteristics of starch obtained from Brosimum alicastrum Swartz seeds. Food Hydrocolloids, 45, 48-54. https://doi.org/10.1016/j.foodhyd.2014.11.009

Moo-Huchin, V. M., Canto-Pinto, J. C., Cuevas-Glory, L. F., Sauri-Duch, E., & Pérez-Pacheco, E. (2019). Effect of extraction solvent on the phenolic compounds content and antioxidant activity of Ramon nut (Brosimum alicastrum). Chemical Papers, 73, 1647-1657. https://doi.org/10.1007/s11696-019-00716-x

Olguín-Maciel, E., Larqué-Saavedra, A., Pérez-Brito, D., Barahona-Pérez, L. F., Alzate-Gaviria, L., Toledano-Thompson, T., Lappe-Oliveras, P.E., Huchin-Poot, E. G., & Tapia-Tussell, R. (2017). Brosimum alicastrum as a novel starch source for bioethanol production. Energies, 10, 1574, https//doi.org/10.3390/en10101574. https://doi.org/10.3390/en10101574

Ortiz, M., Azañon, V., Melgar, M., & Ellias, L. (1995). The corn tree (Brosimum alicastrum): a food source for the tropics. En A.P. Simopoulos AP (Ed.) Plants in Human Nutrition (pp. 135-146). Basilea, Suiza: Karger. https://doi.org/10.1159/000424469

Ozer, H. K. (2017). Phenolic compositions and antioxidant activities of Maya nut (Brosimum alicastrum): Comparison with commercial nuts. International Journal of Food Properties, 20, 2772-2781. https://doi.org/10.1080/10942912.2016.1252389

Paraskevopoulou, A., Provatidou, E., Tsotsiou, D., & Kiosseoglou, V. (2010). Dough rheology and baking performance of wheat flour-lupin protein isolate blends. Food Research International, 43, 1009-1016. https://doi.org/10.1016/j.foodres.2010.01.010

Pérez-Pacheco, E. Moo-Huchin, V. M., Estrada-León, R. J., Ortiz-Fernández, A., May-Hernández, L. H., Ríos-Soberanis, C. R., & Betancur-Ancona, D. (2014). Isolation and characterization of starch obtained from Brosimum alicastrum Swarts seeds. Carbohydrate Polymers, 101, 920-927. https://doi.org/10.1016/j.carbpol.2013.10.012

Pérez‐Pacheco, E., Estrada‐León, R. J., Sauri-Duch, E., Bello‐Pérez, L. A., Betancur‐Ancona, D., & Moo‐Huchin, V. M. (2016). Partial characterization of starch obtained from ramon (Brosimum alicastrum Swartz), oxidized under different conditions. Starch, 69, https//doi.org/10.1002/star.201600233. https://doi.org/10.1002/star.201600233

Peters, C. M., & Pardo-Tejeda, E. (1982). Brosimum alicastrum (Moraceae): uses and potential in Mexico. Economic Botany, 36, 166-175. https://doi.org/10.1007/BF02858712

Ramírez-Sánchez, S., Ibáñez-Vázquez, D., Gutiérrez-Peña, M., Ortega-Fuentes, M. S., García-Ponce, L. L., & Larqué-Saavedra, A. (2017). El ramón (Brosimum alicastrum Swartz) una alternativa para la seguridad alimentaria en México. Agroproductividad, 10, 80-83.

Sánchez, D. V., Muschler, R., Prins, C., Solano, W., & Astorga, C. (2014). Diversidad de especies vegetales alimenticias en la microregión de Cacahuatique Sur de El Salvador: un enfoque en especies comestibles subutilizadas y conocimiento local. Agroecología, 9, 101-109.

Scanlon, M. G., & Zghal, M. C. (2001). Bread properties and crumb structure. Food Research International, 34, 841-864. https://doi.org/10.1016/S0963-9969(01)00109-0

Sehn, G. A. R., Nogueira, A. C., & Steel, C. J. (2016). Non-conventional raw materials for nutritional improvement of breads. En C. M. Rosell, J. Bajerska, & A. F. El Sheikha (Eds.), Breads and its Fortification. Nutritional and Health Benefits (pp. 248-272). Boca Raton, EE.UU.: CRC Press.

Serna-Saldivar, S. O. (2015). Nutrition and fortification of corn and wheat tortillas. En L.W. Rooney & S.O. Serna-Saldivar (Eds.), Tortillas Wheat Flour and Corn Products (pp. 29-64). Saint Paul, EE.UU.: AACC International. https://doi.org/10.1016/B978-1-891127-88-5.50002-5

Sivam, A. S., Sun-Waterhouse, D., Waterhouse, G. I. N., Quek, S. Y., & Perera, C. O. (2011). Physicochemical properties of bread dough and finished bread with added pectin fiber and phenolic antioxidants. Journal of Food Science, 76, H97-H107. https://doi.org/10.1111/j.1750-3841.2011.02086.x

Sobral, P. D. A., Menegalli, F. C., Hubinger, M. D., & Roques, M. A. (2001). Mechanical, water vapor barrier and thermal properties of gelatin based edible films. Food Hydrocolloids, 15, 423-432. https://doi.org/10.1016/S0268-005X(01)00061-3

Szczesniak, A. S. (1963). Classification of Textural Characteristics. Journal of Food Science, 28, 385-389. https://doi.org/10.1111/j.1365-2621.1963.tb00215.x

Trevino-Mejía, D., Luna-Vital, D., Gaytán-Martínez, M., Mendoza, S., & Loarca-Piña, G. (2016). Fortification of commercial nixtamalized maize (Zea mays L.) with common bean (Phaseolus vulgaris L.) increased the nutritional and nutraceutical content of tortillas without modifying sensory properties. Journal of Food Quality, 39, 569-579. https://doi.org/10.1111/jfq.12251

Verdú, S., Vásquez, F., Ivorra, E., Sánchez, A. J., Barat, J. M., & Grau, R. (2015). Physicochemical effects of chia (Salvia hispanica) seed flour on each wheat bread-making process phase and product storage. Journal of Cereal Science, 65, 67-73. https://doi.org/10.1016/j.jcs.2015.05.011

Descargas

La descarga de datos todavía no está disponible.

Metricas

Cargando métricas ...

Metricas alternativas PLUMX

Detalles del artículo